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Astrophysics to GW Event Rates
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Unraveling Binary Evolution
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...but on a hazy day
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Rates predictions
 All astrophysical rates estimates depend on limited 

observations and/or models with many ill-understood 
parameters, and are still significantly uncertain at present

 Ground-based interferometric detectors (LIGO, Virgo, 
GEO 600, AIGO, LCGT) are sensitive @ tens/hundreds 
Hz: ideal for detecting NS-NS, NS-BH, BH-BH binaries

 Coalescence rate predictions from:
» extrapolation from observed binary pulsars
» simulations of isolated binary evolution 
» dynamical-formation models
» intermediate-mass-black holes ?

 Instrument sensitivity and conversion to detection rates
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Extrapolation from BNS observations
 Best NS-NS merger-rate 

estimates come from 
observed Galactic binary 
pulsars

 Small-number statistics 
(~10 total, ~4 merging in 
15 Gyr)

 Selection effects (pulsar 
luminosity distribution)

 [Kim et al., 2003 ApJ 584 985, 
2006 astro-ph/0608280; 
Kalogera et al., 2004, ApJ 601 
L179]
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Population synthesis models
 No observed NS-BH or BH-BH binaries
 Predictions based on population-synthesis models for 

isolated binary evolution with StarTrack [Belczynski et al., 
2005, astro-ph/0511811] or similar codes

 Thirty poorly constrained parameters
 [OʼShaughnessy et al., 2005 ApJ 633 1076, 2008 ApJ 672 479] 

vary seven most important parameters: 
1. power-law index in binary mass ratio
2, 3, 4. supernovae kicks described by two independent Maxwellians and 
their relative contribution 
5. strength of massive stellar wind 
6. common-envelope efficiency
7. fractional mass retention during nonconservative mass transfer
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Constraining models
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 Add constraints from observations; binary pulsars: NS-NS, 
NS-WD, supernovae, etc.

 Average over models that satisfy constraints
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Effect of adding constraints, 1
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Single constraint satisfaction - no accounting for 
sampling uncertainties or model fitting errors
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Effect of adding constraints, 1
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Single constraint satisfaction - no accounting for 
sampling uncertainties or model fitting errors
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Effect of adding constraints, 2

[OʼShaughnessy et al., 2008, ApJ 672 479]

Constraints from 
observed binary pulsars

BH-NS and NS-NS 
rate/MWEG predictions
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Source Rlow Rre Rpl

NS-NS (L−1
10 M yr−1) 0.6 50 500

NS-B H (L−1
10 M yr−1) 0.03 2 60

B H-B H (L−1
10 M yr−1) 0.006 0.2 20
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 In simplest models, coalescence rates are proportional to 
stellar-birth rates in nearby spiral galaxies, so we quote rates 
in units of L10 (blue-light luminosity of 1010 Suns)

 However, this does not properly account for delay of 
coalescence relative to star formation (esp. elliptical galaxies)

Rates per Galaxy
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Ṅ = R×NG

ρ(Dhorizon) ≡ 8
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LIGO sensitivity

|h̃(f)| = 2/D ∗ (5µ/96)1/2(M/π2)1/3f−7/6

(merger rate) = 
(merger rate per L10) * 
(Ng in L10's)

ρ ≡

√

4
∫ fISCO

0

|h̃(f)|2
Sn(f)

df

1/2.26 -- sky and orientation 
averaging;  0.02 L10 per Mpc3

S4 S5 aLIGO

[Kopparapu et al., 2008 ApJ 675 1459 ]
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IFO Source Ṅlow Ṅre Ṅpl

yr−1 yr−1 yr−1

NS-NS 2× 10−4 0.02 0.2
Initial NS-BH 9× 10−5 0.006 0.2

BH-BH 2× 10−4 0.009 0.7
NS-NS 0.4 40 400

Advanced NS-BH 0.2 10 300
BH-BH 0.5 20 1000
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Detection Rates
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Dynamical Formation
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 BH-BH mergers in dense black-hole subclusters of globular 
clusters 
» [OʼLeary, OʼShaughnessy, Rasio, 2007 PRD 76 061504] 
» Predicted rates 10-4 to 1 per Mpc3 per Myr
» Plausible optimistic values could yield 0.5 events/year for Initial LIGO

 BH-BH scattering in galactic nuclei with a density cusp 
caused by a massive black hole (MBH)
» [OʼLeary, Kocsis, Loeb, 2009 arXiv:0807.2638]
» Based on a number of optimistic assumptions 
» Predicted detection rates of 1 to 1000 per year for Advanced LIGO

 BH-BH mergers in nuclei of small galaxies without an MBH
» [Miller and Lauburg, 2009 ApJ 692 917] 
» Predicted rates of a few X 0.1 per Myr per galaxy 
» Tens of detections per year with Advanced LIGO
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Inspirals into IMBHs
 Intermediate-mass-ratio inspirals of compact objects 

(1.4 solar-mass NSs or 10 solar-mass BHs) into 
intermediate-mass black holes in globular clusters 

 Rate per globular cluster: few x 10-9 yr-1

 Predicted Advanced LIGO event rates between 1/few 
years and ~30/year 

15

 Dominant mechanism: 
IMBH swaps into binaries, 
3-body interactions tighten 
IMBH-CO binary, merger 
via GW radiation reaction 
[IM et al., 2008 ApJ 681 1431]



July 16, 2009 MG12, Paris

Inspirals of two IMBHs
 Two very massive stars could form in globular clusters 

with sufficient binary fraction, then grow through run-
away collision to form two IMBHs in same GC
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 Rates of order 1/year are 
possible for Advanced 
LIGO [Fregeau et al., 2006 
ApJ 646 L135]

 IMBH binaries could also 
form when two GCs merge 
[Amaro-Seoane and Freitag, 
2006, ApJ 653 L53]
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Binary characteristics: masses
 Chirp-mass predictions

» Early predictions from [Bulik and 
Belczynski, 2003 ApJ 589 L37] 

» BH-BH chirp mass is typically in 
the [5,10] solar-mass range for 
most systems that merge in less 
than 10 Gyr [OʼShaughnessy, 
Kalogera, Belczynski, 2009, in 
prep.]

» Value can change depending on 
applied constraints, etc.; e.g., 
factor of 1.3 for BH-NS between 
[OʼShaughnessy et al., 2005 ApJ 
633 1076 and ibid., 2008, ApJ 
672 479]
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Mc =
M3/5

1 M3/5
2

(M1 + M2)1/5

Bulik and Belczynski, 2003 ApJ 589 L37
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Informing GW searches with Astro, 1
 Selecting IFO configuration based on astro predictions
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Public LIGO document T-070247 
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 Rates predictions can help to determine which searches 
we should focus resources on

 Choice of waveform templates for detection:
» Example 1: Low chirp masses may make merger/ringdown 

waveforms unnecessary for most stellar-mass BH-BH mergers; 
however, searches with the full inspiral-merger-ringdown waveforms 
informed by numerical relativity will be necessary for GWs from IMBH 
sources

» Example 2: Spin is important for accurate parameter estimation of 
BH-NS and BH-BH binaries

» Example 3: Could cut down on template number (and reduce FAR) 
for spinning BH-NS template banks since very massive BHs will be 
hard to spin up [Pan et al., 2004, PRD 69 104017]
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Informing GW searches with Astro, 2
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Astrophysics with GW searches
 Constraints on astrophysical 

parameters from existing 
electromagnetic observations 
[OʼShaughnessy et al., 2008 ApJ 672 479]:
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Astrophysics with GW searches
 Constraints on astrophysical 

parameters from existing 
electromagnetic observations 
[OʼShaughnessy et al., 2008 ApJ 672 479]:

 Observed GW event rates can be 
compared with models to determine 
important astrophysical parameters;
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Rates to parameter constraints - theory
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 Let f(R) be the measured rates distribution
 The constrained distribution of astrophysical parameters is 

given by Bayes Rule: 

 For a given choice of model parameters, population 
synthesis codes coupled to information about galaxy 
distributions and detector sensitivity provide a distribution 
of the detectable event rate, 

 If an actual rate R is measured, then the likelihood that the 
model with a given choice of parameters fits the 
measurement is 

 Then p(f(R)|!Θ) =
∫

dR̂L(R|!Θ)p(R̂|!Θ)
L(R|!Θ) = e

− |R−R̂|2

2σ2
R

p(!Θ|f(R)) =
p(f(R)|!Θ)p(!Θ)

p(f(R))

p(R̂|!Θ)
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Astrophysics with GW searches
 Constraints on astrophysical 

parameters from existing 
electromagnetic observations 
[OʼShaughnessy et al., 2008 ApJ 672 479]:

 Observed GW event rates can be 
compared with models to determine 
important astrophysical parameters;

 Could match measured mass 
distributions, etc. to models (requires 
accurate parameter determination)
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Accurate Parameter Estimation

24
van der Sluys, IM, Raymond, IM et  al., 0905.1323
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Astrophysics with GW searches
 Constraints on astrophysical 

parameters from existing 
electromagnetic observations 
[OʼShaughnessy et al., 2008 ApJ 672 479]:

 Observed GW event rates can be 
compared with models to determine 
important astrophysical parameters;

 Could match measured mass 
distributions, etc. to models (requires 
accurate parameter determination)

 As detector sensitivity improves, 
even upper limits can be useful in 
constraining parameter space for 
birth kicks, common-envelope 
efficiency, winds, etc.
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Constraints from upper limits - example
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Constraints from upper limits - example
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Common Envelope Efficiency

27

Also possible to constrain common-
envelope model with LISA observations: 
[Belzcynski, Benacquista, Bulik, 2008, arXiv:0811.1602] [Kalogera et al., 2007, Physics Reports 442, 75]
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Conclusion
 Current understanding of coalescence rates and 

properties of compact binaries is imperfect
 Advanced LIGO is likely to see NS-NS, NS-BH, BH-BH 

coalescences; tens or more coalescences may be seen 
according to some models, including dynamical formation

 Chirp masses for binaries formed via isolated evolution 
are likely ≤ 10 solar masses; rapid spins are possible

 Improved understanding of astrophysics can help GW 
search by informing detector configuration, template family

 GW detections and upper limits for compact-object 
coalescences will allow us to constrain the astrophysical 
parameters

28


