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We explore the properties of test-particle orbits in bumpy spacetimes—stationary, reflection-
symmetric, asymptotically flat solutions of Einstein equations that have a non-Kerr (anomalous)
higher-order multipole-moment structure but can be tuned arbitrarily close to the Kerr metric. Future
detectors should observe gravitational waves generated during inspirals of compact objects into super-
massive central bodies. If the central body deviates from the Kerr metric, this will manifest itself in the
emitted waves. Here, we explore some of the features of orbits in non-Kerr spacetimes that might lead to
observable signatures. As a basis for this analysis, we use a family of exact solutions proposed by Manko
and Novikov which deviate from the Kerr metric in the quadrupole and higher moments, but we also
compare our results to other work in the literature. We examine isolating integrals of the orbits and find
that the majority of geodesic orbits have an approximate fourth constant of the motion (in addition to the
energy, angular momentum, and rest mass) and the resulting orbits are triperiodic to high precision. We
also find that this fourth integral can be lost for certain orbits in some oblately deformed Manko-Novikov
spacetimes, leading to ergodic motion. However, compact objects will probably not end up on these
chaotic orbits in nature. We compute the location of the innermost stable circular orbit (ISCO) and find
that the behavior of an orbit in the approach to the ISCO can be qualitatively different depending on
whether the location of the ISCO is determined by the onset of an instability in the radial or vertical
direction. Finally, we compute periapsis and orbital-plane precessions for nearly circular and nearly
equatorial orbits in both the strong and weak field, and discuss weak-field precessions for eccentric
equatorial orbits.
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I. INTRODUCTION

The space-based gravitational-wave detector LISA is
expected to detect gravitational waves (GW) generated
during the inspirals of stellar-mass compact objects (white
dwarfs, neutron stars, or black holes) into supermassive
bodies in the centers of galaxies—extreme-mass-ratio in-
spirals (EMRIs). LISA could detect gravitational waves
from these systems for several years prior to the plunge of
the compact object into the central body and hence observe
several hundred thousand waveform cycles. Such observa-
tions will provide an exquisite probe of the strong gravity
region close to supermassive central bodies (see [1] for a
review). In principle, the emitted gravitational waveform
encodes the multipole structure of the spacetime outside
the central object [2]. One of the hopes for LISA EMRI
observations is to extract this spacetime structure from the
data and use it to test whether the central objects are indeed
Kerr black holes, as we suppose, or something else [2,3].
(Intermediate-mass-ratio inspirals detectable by Advanced
LIGO may reveal the spacetime structure outside
intermediate-mass central bodies with more modest preci-
sion [4]).

For a Kerr black hole, the spacetime is uniquely deter-
mined by the mass and angular momentum of the hole and

all higher multipole moments depend on these in a simple
way

 Ml � iSl � M�i�M�l: (1)

Here Ml and Sl are the lth mass and current multipole
moments of the gravitational field, M is the mass of the
black hole, and � is its dimensionless spin parameter, � �
S1=M2 � a=M. As a consequence of relation (1), if the
quadrupole or higher multipole moments of a supermassive
body are measured from an EMRI observation and these
are inconsistent with the values predicted by its mass and
spin, the body cannot be a Kerr black hole with a vacuum
exterior. The ‘‘no-hair’’ theorem states that, in pure gravity,
any pseudostationary, vacuum and asymptotically flat
spacetime containing an event horizon and with no closed
timelike curves exterior to the horizon must be described
by the Kerr metric [5,6]. If the Cosmic Censorship
Conjecture is correct, all astrophysical singularities will
be enclosed by a horizon. It is therefore most likely that the
supermassive central bodies which are observed to inhabit
the nuclei of most galaxies are indeed Kerr black holes.
However, LISA should be able to test this assumption.
Alternatives to Kerr black holes include ‘‘dirty’’ Kerr black
holes with external masses (e.g., an accretion disk), exotic
supermassive stars such as boson stars [7], and naked
singularities. ‘‘Hairy’’ black-hole solutions are also al-*jgair@ast.cam.ac.uk
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lowed when gravity is coupled to other fields, e.g., a Yang-
Mills field (these solutions have been shown to be unstable
to perturbations [8]) or a Skyrme field [9] (stability to
generic perturbations is an open question). Sufficiently
accurate measurements may allow us to distinguish be-
tween these possibilities.

In order to prepare us to interpret LISA observations of
EMRIs, to identify any deviations from Kerr that are
manifest in the waveforms, and even to facilitate detection
of inspirals into highly non-Kerr spacetimes, we need to
understand how these deviations influence the emitted
gravitational waveforms. In an extreme-mass-ratio inspi-
ral, the time scale for the orbital inspiral due to radiation of
energy and angular momentum is generally much longer
than the orbital time scale. We can therefore approximate
the inspiral as quasistationary, by assuming the inspiraling
object is always nearly on a geodesic orbit of the space-
time, and evolving the parameters determining this geode-
sic slowly over the inspiral (this is usually referred to as the
‘‘adiabatic approximation’’ in the literature [10] since the
fluxes of energy and angular momentum used to evolve the
sequence of geodesics are computed by assuming the
object is on an exact geodesic of the spacetime). In this
slow-inspiral limit, the emitted waveforms depend sensi-
tively on the properties of the geodesic orbits in the space-
time—the dominant frequency components in the
gravitational waveform at any moment are harmonics of
the orbital frequencies of the underlying geodesic. We can
thus understand some of the main consequences of devia-
tions from the Kerr metric by examining the effect of such
deviations on test-particle orbits in the spacetime. By con-
sidering a spacetime with an arbitrary set of multipole
moments, Ryan demonstrated that, for nearly circular and
nearly equatorial orbits, the periapsis and orbital-plane
precessions encoded all of the multipole moments at differ-
ent orders in a weak-field expansion [2].

A multipole-moment decomposition is not very practi-
cal, however, since an infinite number of multipoles are
required to characterize the Kerr spacetime. For this rea-
son, Collins and Hughes [11] and Glampedakis and Babak
[12] took a different approach and explored test-particle
dynamics in ‘‘bumpy’’ spacetimes, which were constructed
as first-order perturbations of the Schwarzschild and Kerr
spacetimes, respectively, and therefore could be made
arbitrarily close to Schwarzschild/Kerr by dialing a pa-
rameter to zero. Collins and Hughes coined the phrase
bumpy black hole to describe these spacetimes. In their
case, the presence of stresses exterior to the black hole
meant that the horizon could be preserved in the presence
of the black-hole deformation without violating the no-hair
theorem. In the present case, this name is not strictly
applicable since the spacetimes we consider are not black
holes at all, but rather naked singularities not enclosed by
an event horizon. However, the term bumpy black hole is
still a good one to describe how the spacetime appears to an
observer away from the central object.

One drawback of the perturbative approach is that the
perturbation is not necessarily small close to the central
body, and so the first-order perturbation theory used to
construct the spacetime breaks down. As a result, the
perturbative solutions may only be used relatively far
from the central object. In this work, we therefore take
an alternative approach and consider the properties of
orbits and inspirals in a family of spacetimes that are exact
solutions of the vacuum field equations of relativity and
which include the Kerr and Schwarzschild spacetimes in a
certain limit. We use a family of spacetimes that were
derived by Manko and Novikov [13]. As exact solutions,
the spacetimes are valid everywhere and can thus be used
to probe the orbital dynamics in the strong field as well as
the weak field. The family has an infinite number of free
parameters, which can be chosen to make the multipole
moments of the spacetime match those of the Kerr space-
time up to a certain order, and then deviate at higher order.
In this paper, we choose to make the multipole moments
deviate at the mass quadrupole order and higher, by vary-
ing a single parameter, although the formalism generalizes
to other types of deviation. We use this family of space-
times as a test bed for an exploration of various observable
consequences of deviations from the Kerr metric, but we
compare to previous work in the literature as we proceed.

The main new results of the current work are as follows.
By studying the properties of orbits in the strong field of
the spacetime, we find that most geodesics in the spacetime
appear to have a fourth isolating integral of the motion, in
addition to the energy, angular momentum, and rest mass
that are guaranteed by the stationarity and axisymmetry of
the metric. The corresponding orbits are triperiodic to high
accuracy. This was not guaranteed, since the separability of
the geodesic equations in Kerr and corresponding existence
of a fourth integral (the Carter constant) was unusual.
Additionally, we find that for some oblate perturbations
of the Kerr spacetime, there are regions of the spacetime in
which there appears to be no fourth integral, leading to
ergodic motion. If observed, ergodicity would be a clear
‘‘smoking gun’’ for a deviation from Kerr. Ergodic motion
has been found in other exact relativistic spacetimes by
other authors, although these investigations were not car-
ried out in the context of their observable consequences for
EMRI detections. Sota, Suzuki, and Maeda [14] described
chaotic motion in the Zipoy-Voorhees-Weyl and Curzon
spacetimes; Letelier and Viera [15] found chaotic motion
around a Schwarzschild black hole perturbed by gravita-
tional waves; Guéron and Letelier observed chaotic
motion in a black-hole spacetime with a dipolar halo
[16] and in prolate Erez-Rosen bumpy spacetimes [17];
and Dubeibe, Pachon, and Sanabria-Gomez found that
some oblate spacetimes which are deformed generaliza-
tions of the Tomimatsu-Sato spacetime could also exhibit
chaotic motion [18]. The new features of our current
results are the presence of potentially ergodic regions for
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a wider range of magnitudes of the perturbation, and
an examination of whether the ergodic regions are astro-
physically relevant. We find that, in the context of an
EMRI, the ergodic regions exist only very close to the
central body and these regions are probably not astrophysi-
cally accessible, at least in the Manko-Novikov spacetime
family.

We also look at the properties of the last stable orbit for
circular, equatorial inspirals. The frequency of this orbit
will be a gravitational-wave observable, and depends sig-
nificantly on the magnitude of any deviations from Kerr.
For certain choices of the quadrupole perturbation, we find
that the last stable orbit is defined by the onset of a vertical
instability, rather than the radial instability which charac-
terizes the last stable orbit in Kerr. This is a qualitative
observable that could be another smoking gun for a devia-
tion from Kerr.

Finally, we look at the periapsis and orbital-plane pre-
cession frequencies. We do this primarily for nearly circu-
lar and nearly equatorial orbits, since these can be
characterized in a gauge-invariant way in terms of the
orbital frequency measured by an observer at infinity.
Although such precessions were computed by Ryan [2],
his results only apply in the weak field. We find results that
are consistent with Ryan’s in the weak field, but also
explore the properties of precessions in the strong field
and find they depend significantly on the nature and loca-
tion of the last stable orbit. Collins and Hughes [11] and
Glampedakis and Babak [12] did explore strong-field pre-
cessions, but they did so as a function of spacetime coor-
dinates, rather than as a function of observable quantities
which we do here. The perturbative spacetimes are also not
totally applicable in the vicinity of the last stable orbit, so
our results are more generally applicable. We also briefly
discuss precessions for eccentric equatorial orbits in the
weak field and how this is relevant for LISA observations.

The paper is organized as follows. In Sec. II, we intro-
duce our chosen family of spacetimes, describe some
properties of these solutions, and discuss our approach to
computing geodesics in the spacetimes. In Sec. III we
analyze geodesics in these bumpy spacetimes and use
Poincaré maps to identify the presence of an effective
fourth integral of the motion. We show that most orbits
are regular and triperiodic, but also demonstrate the onset
of ergodic motion in certain oblately deformed spacetimes.
In Sec. IV we find the last stable orbit for circular, equa-
torial orbits and discuss its properties. In Sec. V we report
our results on the periapsis precession and orbital-plane
precession in these spacetimes. Finally, in Sec. VI we
summarize our results and discuss further extensions to
this work. This paper also includes two appendices, in
which we present results demonstrating ergodic motion
in Newtonian gravity (Appendix A) and an expansion of
the precessions in the weak field (Appendix B).
Throughout this paper we will use units such that c � G �
1.

II. BUMPY BLACK-HOLE SPACETIMES

In this section, we briefly summarize the Manko-
Novikov metric [13]. This is the test metric for which we
will explore the dynamics of orbits in Secs. III, IV, and V.
The Manko-Novikov metric is an exact stationary, axisym-
metric solution of the vacuum Einstein equations that
allows for deviations away from the Kerr spacetime by a
suitable choice of parameters characterizing the higher-
order multipole moments. The presence of these deviations
destroys the horizon, so this is no longer a black-hole
spacetime. However, its geometry is very similar to that
of a Kerr black hole with additional anomalous multipole
moments until close to the expected horizon location. We
choose a subclass of the Manko-Novikov metric, parame-
trized by a parameter �. For� � 0, the metric corresponds
to the usual Kerr metric. (In the notation of [13], our
parametrization corresponds to setting �2 � � and �n �
0 for all n � 2).

This subclass of the Manko-Novikov metric can be
described by a Weyl-Papapetrou line element in prolate
spheroidal coordinates as (cf. Eq. (1) of [13]):
 

ds2 � �f�dt�!d��2 � k2f�1e2��x2 � y2�

�

�
dx2

x2 � 1
�

dy2

1� y2

�
� k2f�1�x2 � 1��1� y2�d�2;

(2)
where (cf. Eqs. (9, 10, 12, 13 of [13]):
 

f� e2 A=B; (3a)

!� 2ke�2 CA�1� 4k��1��2��1; (3b)

e2� � exp�2�0�A�x2� 1��1�1��2��2; (3c)

A� �x2� 1��1� ab�2��1� y2��b�a�2; (3d)

B� �x� 1��x� 1�ab	2���1� y�a��1� y�b	2;

(3e)

C� �x2� 1��1� ab��b� a� y�a�b�	

� �1� y2��b� a��1�ab� x�1�ab�	; (3f)

 ��R�3P2; (3g)

�0 �
1

2
ln
x2� 1

x2� y2�
9�2

6R6
�P3P3�P2P2�

��
X2

‘�0

�
x� y���1�2�‘�x� y�

R‘�1
P‘� 2

�
; (3h)

a�x;y� ���exp
�
�2�

�
�1�

X2

‘�0

�x� y�P‘
R‘�1

��
; (3i)

b�x;y� � �exp
�
2�
�
1�

X2

‘�0

��1�3�‘�x� y�P‘
R‘�1

��
; (3j)

R� �x2� y2� 1�1=2; (3k)

Pn � Pn�xy=R�; where Pn�x� �
1

2nn!

�
d
dx

�
n
�x2� 1�n:

(3l)
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Here k, �, and � are free parameters which determine the multipole moments of this spacetime. The first few multipole
moments have the following values (we correct a typo in Eq. (14) of [13] following [19]):

 

M0 � k�1� �2�=�1� �2�; S0 � 0;

M1 � 0; S1 � �2�k2�1� �2�=�1� �2�2;

M2 � �k
3��� 4�2�1� �2��1� �2��3	; S2 � 0;

M3 � 0; S3 � 4�k4��� 2�2�1� �2��1� �2��3	=�1� �2�:

(4)

Therefore, for a given choice of mass M � M0, spin � �
S1=M2, and anomalous (additional to Kerr) dimensionless
quadrupole moment q � ��M2 �MKerr

2 �=M3, the three
metric parameters are

 � �
�1�

���������������
1� �2

p
�

; k � M
1� �2

1� �2 ;

� � q
M3

k3 :

(5)

A given choice of M, �, and q uniquely defines the metric.
With this definition of q, a choice q > 0 represents an
oblate perturbation of the Kerr metric, while q < 0 repre-
sents a prolate perturbation. A spacetime is oblate if it has
M2 < 0, e.g., for Kerr M2 � ��

2M3. When we say a
prolate/oblate perturbation we mean a perturbation that
makes the spacetime more prolate/oblate relative to Kerr.

In particular, for��2 < q< 0 the spacetime is still oblate,
although it has a prolate perturbation relative to the Kerr
metric. We note that taking q � 0 changes all higher mo-
ments from their Kerr values, so these solutions deviate not
only in the mass quadrupole moment but also in the current
octupole moment, the mass hexadecapole moment, etc.

To present our results, we find it useful to display them
in terms of cylindrical coordinates �, z, and �. These are
related to the prolate spheroidal coordinates x, y by [19]

 � � k�x2 � 1�1=2�1� y2�1=2; z � kxy; (6)

and the line element in cylindrical coordinates is
 

ds2 � �f�dt�!d��2

� f�1�e2��dz2 � d�2� � �2d�2	: (7)

FIG. 1. Spacetime structure for � � 0:9. The upper row shows zeros of gtt for q � �1 (left column), q � 0 (middle column), and
q � 1 (right column). This defines the boundary of the ergoregion of the spacetime. The region with gtt > 0 is shaded. The bottom row
shows points where g�� changes sign for the same values of q, and the region where g�� < 0 is shaded. This defines the region where
closed timelike curves exist. The middle bottom panel is empty since there is no such region in the Kerr spacetime. The shape of the
two boundaries is qualitatively the same for other values of q with the same sign, although both regions grow as jqj is increased.
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A. Spacetime properties

The Manko-Novikov spacetimes are vacuum and have
the multipolar structure given in Eq. (4). As a consequence
of the no-hair theorem, the spacetimes must therefore
either lack an event horizon or contain closed timelike
curves exterior to a horizon. In fact, both of these state-
ments are true. The central singularity is enclosed by a
partial horizon at coordinates � � 0, jzj 
 k. However,
this horizon is broken in the equatorial plane by a circular
line singularity at x � 1, y � 0 (� � z � 0) [20]. For � �
0 the spacetime is otherwise regular, but for � � 0, the
spacetimes contain both an ergosphere and a region where
closed timelike curves exist. The structure of the space-
times is quite similar to that of the � � 2 Tomimatsu-Sato
spacetime, as described in [21]. The boundary of the
ergosphere is determined by the condition gtt � 0. Inside
this region, timelike observers cannot be at rest. Such a
region is entirely physical, and also exists in the Kerr
spacetime, where it is of interest since it allows energy
extraction via the Penrose process. We show the location of
the ergosphere for � � 0:9 and various choices of q in the
top panel of Fig. 1. The shape of the ergosphere is more
complicated when q � 0, having a multiple lobed struc-
ture. This structure is also qualitatively different depending
on the sign of q—for q > 0 there are three separate
ergoregions, one of which intersects the equatorial plane,
one which is entirely above the equatorial plane, and one
which is entirely below; for q < 0 there are only two
regions, one of which is entirely above the equatorial plane
and one of which is entirely below.

For a metric of this type, the region where closed time-
like curves (CTCs) exist is determined by the condition
g�� < 0. In the bottom panel of Fig. 1 we show the portion
of the spacetime where CTCs exist for the same choices of
q and � � 0:9. Particles orbiting inside the CTC region are
moving backward in time. This is not inconsistent with
relativity, but CTC zones are sometimes regarded as un-
physical. A spacetime with no CTC zone can be con-
structed by adding an inner boundary in the spacetime,
and just using the portion of the Manko-Novikov solution
exterior to that boundary.

The CTC zone again has a multiple lobed structure and
is different depending on the sign of q. We note, in par-
ticular, that for q < 0 the ergosphere does not intersect the
equatorial plane, although the CTC region does. For q > 0
both regions intersect the equatorial plane, and the outer-
most edge of the CTC region is inside the ergoregion.

B. Geodesic motion

Geodesic motion in an arbitrary spacetime is described
by the second-order equations

 

d2x�

d�2
� �����

dx�

d�
dx�

d�
; (8)

where the connection coefficients ���� are given by

 ���� �
1
2g
�	�g	�;� � g	�;� � g��;	�: (9)

The spacetimes we are interested in are axisymmetric and
time independent and the metric correspondingly has two
ignorable coordinates—t and �. There are therefore two
constants of geodesic motion: the energy E and the
z-component of angular momentum Lz, which are given by

 E � �gtt _t� gt� _�; Lz � gt� _t� g�� _�; (10)

where a dot _ denotes the derivative with respect to proper
time �. Another first integral of the motion can be obtained
from conservation of the rest mass of the orbiting particle:

 � 1 � g�� _x� _x�: (11)

In practice, we numerically integrate the second-order
geodesic equations (8) rather than use these first integrals,
and we use the constancy of E, Lz, and g�� _x� _x� as cross-
checks to verify the quality of our numerical results. The
results reported below typically show the conservation of
these quantities to a few parts in 1010 over the time of
integration; see Fig. 2. We compute the connection coef-
ficients analytically from expressions for the metric func-
tions f, !, and � defined in Eqs. (3). The only difficulty
arises at points where a metric component g	
 vanishes
and its inverse g	
 diverges. When this occurs, we analyti-
cally factor out the terms that tend to zero to avoid issues in
numerical integration. To perform the numerical integra-
tion we write the coupled system of 4 second-order ordi-
nary differential equations (8) in first-order form and
integrate numerically via the Bulirsch-Stoer method.

Some general properties of geodesic motion can be
understood by using the first integrals (10) and (11). The
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FIG. 2. The fractional errors in energy E (solid line), angular
momentum Lz (dashed line), and the quantity g�� _x� _x� (dotted
line) accumulated over 1700 orbits of a geodesic with E � 0:92
and Lz � 2:5M in a spacetime with spin � � 0:9 and anomalous
quadrupole moment q � 0:95.
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energy and angular-momentum conservation equa-
tions (10) can be used to write _t and _� in terms of E, Lz,
�, and z:

 

_t �
Eg�� � Lzgt�
g2
t� � gttg��

; _� �
�Egt� � Lzgtt
g2
t� � gttg��

: (12)

These expressions can be substituted into Eq. (11) to give
 

e2���;z�

f��; z�
� _�2 � _z2� �

E2

f��; z�
�
f��; z�

�2 �Lz �!��; z�E	2 � 1

� Veff�E;Lz; �; z�: (13)

The motion in � and z may thus be thought of as motion in
the effective potential Veff . In particular, since the left-hand
side of Eq. (13) is strictly positive or zero, motion can only
exist in regions where Veff � 0. Finding the zeros of the
effective potential therefore allows us to find allowed
regions of the motion. As an illustration, we show the zeros
of the effective potential in Fig. 3 for the simple case of the
Kerr metric with spin parameter � � 0:9, energy E �
0:95, and angular momentum Lz � 3M. There are two
regions of allowed motion—one region at larger radius
that corresponds to bound orbits, and another region at very
small radii that corresponds to rising and plunging orbits.

We now turn our attention to the Manko-Novikov space-
time with q � 0. For spacetimes with � � 0, and for
spacetimes with � � 0 and q < 0 (prolate perturbation of
the Kerr metric at large radii), the addition of the pertur-
bation does not fundamentally change the nature of the
effective potential—there are still two bounded regions,
one attached to the origin corresponding to rising and
plunging orbits and one at larger radii corresponding to
bound orbits. The shapes of these regions change as jqj is
increased and if jqj is increased sufficiently at fixed E and

Lz the two regions merge, so that all allowed orbits can
reach the origin. Even after this has occurred, there appear
to be two types of orbit in the single allowed region—those
that rise and plunge and those that undergo many periods of
radial oscillation. We do not know if the latter remain
nonplunging forever in principle. In practice, perturbations
due to external material or radiation reaction may cause
bound orbits to diffuse onto plunging orbits over time. For
fixed q < 0, the two allowed regions also change shape as
the energy and angular momentum are varied. In particular,
the plunging region connected to the partial horizon at � �
0, jzj 
 k develops a multi-lobed structure. For sufficiently
large jqj and sufficiently low E and Lz, two of these lobes
can touch in the equatorial plane. This leads to the exis-
tence of circular, equatorial orbits that are unstable to
vertical perturbations, which we will encounter again in
Sec. IV.

For � � 0 and q > 0 (oblate perturbation of the Kerr
metric at large radii), the behavior is qualitatively different.
For any arbitrarily small jqj, an additional allowed region
appears in the effective potential, which is bounded away
from � � 0 and therefore corresponds to bound orbits. For
small jqj this new region is very close to � � 0. The other
two allowed regions still exist, and merely change shape as
the value of jqj is increased. The additional bound region is
always outside the region where closed timelike curves
(CTCs) exist, and is therefore in the portion of the space-
time that can be regarded as physical. However, in the
plane z � 0 the outermost edge of the CTC region touches
the innermost edge of the region of bound motion. This
additional region also extends inside the spacetime
ergosphere.

We consider as an example the case with � � 0:9 and
q � 0:95. The zeros of the effective potential Veff are
plotted in Fig. 4 for geodesics with energy E � 0:95 and
angular momentum Lz � 3M. In this figure there are three
distinct allowed regions as described above: (i) a foliated
‘‘plunging’’ region connected to � � 0, where all orbits
rapidly plunge through the horizon (this region also inter-
sects the CTC region); (ii) an inner bound region, which is
located between �=M � 0:72 and �=M � 2:12 for the
chosen values of E and Lz; and (iii) an outer bound region
between �=M � 2:39 and �=M � 13:6. We show the tra-
jectory of a typical orbit in the outer region. This has a
regular pattern or intersections throughout the ��; z� plane,
which is characteristic of an orbit with an approximate
fourth integral.

If jqj is increased from the value shown in Fig. 4, the two
regions of bound motion eventually merge. When this first
occurs, the ‘‘neck’’ joining the regions is extremely narrow.
Geodesics exist which can pass through the neck, but this
requires extreme fine-tuning. As jqj is further increased,
the neck gradually widens and eventually disappears. At
that stage, the single allowed region for bound orbits has a
similar shape to the outer region of Fig. 4.
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FIG. 3. Effective potential for geodesic motion around a Kerr
black hole, with E � 0:95, Lz � 3M, and � � 0:9. The curves
indicate zeros of the effective potential. Allowed orbits are found
in the small region around � � 0, z � 0 (rising and plunging
orbits) or in the region containing � � 10, z � 0 (bound orbits).
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These general properties of the effective potential seem
to be common to all spacetimes with q > 0 and � � 0.
More relevant for the EMRI problem is to fix q and � and
to vary E and Lz. For E � 1 and sufficiently large Lz, there
are two regions of allowed motion bounded away from the
origin, in addition to the plunging zone connected to � �
0, jzj 
 k. The outermost of the allowed regions stretches
to infinity and contains parabolic orbits. The inner region
of bounded motion is the analogue of the inner bound
region described above and lies very close to the central
object. If the angular momentum is decreased, while keep-
ing E � 1, the two nonplunging regions get closer together
and eventually merge to leave one allowed region that
stretches to infinity. For fixed E< 1 the behavior is quali-
tatively the same, except that for Lz  M there is no outer
region (there is a maximum allowed angular momentum
for bound orbits of a given energy, as in the Kerr space-
time). As Lz is decreased, the outer region for bound
motion appears and then eventually merges with the inner
region. Decreasing Lz further eventually causes the bound
region to merge with the plunging region. At fixed Lz, if
there are two distinct nonplunging allowed regions for E �
1, these regions do not merge as E is decreased, but the
outer region eventually disappears (there is a minimum
allowed energy for orbits of a given angular momentum, as
in the Kerr spacetime). If there is only one nonplunging
region for E � 1, then as E is decreased, this region
eventually splits into two allowed regions, and the
outer region eventually disappears as E is decreased fur-
ther. The properties are similar for all � � 0, but decreas-
ing �with the other parameters fixed tends to bring the two

allowed regions of motion closer to merger with one
another.

III. ISOLATING INTEGRALS

The isolating integrals given by the conservation equa-
tion (10) and (11) do not completely describe the motion,
since the motions in � and z are coupled. Thus, the solution
of the geodesic equations requires use of the second-order
form of those Eqs. (8). However, it was demonstrated by
Carter [22] that in the Kerr spacetime there is a fourth
isolating integral for geodesic motion, the Carter constant,
which arises as a constant of separability of the Hamilton-
Jacobi equation and was later shown to be associated with a
Killing tensor in the spacetime. Carter found the form of all
metrics that were both Schrödinger and Hamilton-Jacobi
separable. Imposing the further requirement that the metric
be a solution of the vacuum Einstein-Maxwell equations
leads to the Kerr metric as the only spacetime of this form
that does not include a gravomagnetic monopole. Thus, the
separability of the equations in Kerr is somewhat fortuitous
and we would not expect that the fourth integral would be
preserved when we add an anomalous quadrupole moment
as we do here. As a consequence, the properties of geo-
desics might be expected to be somewhat different, and
might even be ergodic. As mentioned in the introduction,
ergodic geodesic motion has been found in other relativis-
tic spacetimes by several other authors [14–18].

A fourth integral of the motion essentially gives another
relationship between _�2 and _z2. Combining this with the
effective potential Eq. (13) allows us to eliminate _z2 for
instance and hence obtain an expression for _�2 as a func-
tion of � and z only. Similarly we can obtain an expression
for _z2 as a function of � and z.

A standard way to examine equations of motion and
look for ergodicity is to plot a Poincaré map. This involves
integrating the equations of motion and recording the value
of � and _� every time the orbit crosses a plane z �
constant. From the preceding arguments, if a fourth inte-
gral exists, the value of _� will be a function only of � and z
(the function could be multivalued, depending on the order
at which the velocities appear in the constants of motion).
Therefore such a map must show a closed curve. Similarly,
if the Poincaré map of an orbit shows a closed curve for
every value of z, then this defines a relationship between _�,
�, and z which is then an effective fourth integral of the
motion. The Poincaré analysis thus provides a means to
identify whether an effective fourth integral exists or the
motion is apparently ‘‘chaotic.’’ In the latter case, the
absence of the integral would be manifested on the
Poincaré maps as space-filling trajectories rather than
closed curves.

The absence of a full set of isolating integrals does not
necessarily mean that all orbits will exhibit full-blown
chaos. For some initial conditions, orbits may show ob-
vious signs of ergodicity, while for other initial conditions
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FIG. 4. Effective potential for geodesic motion around a
bumpy black hole with � � 0:9, q � 0:95, E � 0:95, and Lz �
3M. The thick dotted curves indicate zeros of the effective
potential. The trajectory of a typical geodesic in the outer region
is shown by a thin curve. The regular pattern of self-intersections
of the geodesic projection onto the �� z plane indicates (nearly)
regular dynamics.
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in the same spacetime, orbits may appear to behave in an
integrable fashion, suggesting that an approximate addi-
tional invariant exists. Although this behavior may appear
surprising at first glance, it is consistent with the predic-
tions of the KAM theorem and with many known examples
of chaotic behavior. (The KAM theorem, due to
Kolmogorov, Arnold, and Moser, states that if the Hamil-
tonian of a system with a full set of integrals of motion is
analytically weakly perturbed, then phase-space motion in
the perturbed system will be confined to the neighborhoods
of invariant tori in phase space, except when angle-variable
frequencies of the unperturbed system are nearly commen-
surate, in which case motion will be chaotic [23].)

As an illustration, we show in Fig. 5 the Poincaré map
for geodesic motion along orbits with three different initial
conditions in the Kerr spacetime with the same E, Lz, and
� as Fig. 3. The Poincaré maps are all closed curves,
consistent with the existence of the fourth isolating inte-
gral, the Carter constant. In Appendix A we present results
for motion under gravity in a Newtonian quadrupole-
octupole potential and demonstrate the existence of both
regular and ergodic orbits. This example serves to put the
relativistic results described here in a Newtonian context.

A. Poincaré maps for the Manko-Novikov spacetimes

The regularity properties of geodesics appear to be
highly correlated with the nature of the effective potential
as described in the previous section. For spacetimes with
� � 0 and those with � � 0 but q < 0, all orbits appear to
be regular, i.e., they show closed Poincaré maps similar to
those in Fig. 5. These are the spacetimes in the Manko-
Novikov family that have effective potentials which are
qualitatively the same as the Kerr case.

For q > 0, the effective potential can have two allowed
regions for bound motion. What is striking is that, whereas
orbits in the outer allowed bound region (which corre-
sponds to the allowed region in the q � 0 limit) appear
to be regular, with closed Poincaré maps, those in the inner
allowed region appear chaotic. In Figs. 6 and 7 we show
Poincaré maps for one orbit in each of the outer and inner
regions of the effective potential illustrated in Fig. 4 (q �
0:95, E � 0:95, Lz � 3M, � � 0:9). Orbits in the outer
region show closed Poincaré maps, suggesting that the
motion is regular or very nearly so and has an approximate
fourth invariant of the motion. This is reinforced by the
projection of the orbit onto the �-z plane, which was shown
in Fig. 4. The geodesic shows a regular grid pattern, with
four possible velocities at each point, corresponding to
�j _�j and �j _zj. If these orbits do not have a true invariant,
the regularity of the Poincaré map suggests that it may still
be possible to find an algebraic expression for an approxi-
mate constant of the motion.

Orbits in the inner region, by contrast, seem to fill up all
possible points in a subdomain of the allowed parameter
space (with Veff > 0) and are therefore apparently ergodic
in this subdomain. It seems likely, in view of the KAM
theorem, that all orbits in the spacetime are strictly speak-
ing chaotic, and no true isolating integral exists, but in the
outer region there is a quantity that is nearly invariant along
the orbits [4]. Either the thickness of the region mapped out
by the chaotic motion is small, or the time over which
ergodicity manifests itself is very long. From an observa-
tional standpoint, whether the motion is actually regular or
whether only an approximate invariant exists is irrelevant,
since the time scale over which ergodicity would manifest
itself in the waveform would be much longer than the time
during which the orbiting object moves on an approximate
geodesic.
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FIG. 6. Poincaré map for a geodesic in the outer region of
Fig. 4.
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FIG. 5. Poincaré map showing d�=d� vs � for crossings of the
z � 0 plane for a sequence of orbits in the outer allowed region
of the Kerr spacetime with E � 0:95, Lz � 3M, and � � 0:9.
The closed curves indicate the presence of a fourth isolating
integral, which we know to be the Carter constant.
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It is unusual, given that chaotic and nearly regular
regions are generally interspersed in most KAM theorem
applications [23], that we find the family of geodesics is
divided into two distinct regions such that geodesics in one
region are ergodic while those in the other exhibit nearly
regular orbital dynamics. We have been unable to find any
strongly ergodic geodesics in the outer region, or any
nonergodic geodesics in the inner region. As described in
the previous section, adjusting the orbital parameters can
cause the two allowed regions to merge. When this first
occurs, the two regions are connected by a very narrow
neck. The narrowness of the neck means that extreme fine-
tuning is required to get a geodesic to pass through the
neck. By choosing initial conditions in the neck, and
integrating forwards and backwards in time, we obtained
orbits that traversed the neck once and found that the
motion was apparently ergodic while in the inner region,
but apparently regular in the outer region. This behavior is
consistent with the predictions of the KAM theorem, but
observationally the fact that the orbits in the outer region
are technically ergodic does not matter as long as they
appear regular on long time scales. We were unable to find
an orbit that traversed the neck more than once. Further
adjustment of the orbital parameters causes the neck to
widen and eventually disappear. At that stage, most of the
orbits appear to be regular, but orbits that pass very close to
the inner edge of the merged region (i.e., close to the CTC
zone) have not been fully investigated.

An alternative explanation of these results [24] is that
the geodesic equations are numerically unstable in the
inner region, and therefore small numerical round-off er-
rors in the integration routines are driving the orbits away
from their true values. Once again, this distinction is not
relevant observationally. An astrophysical system harbor-
ing an EMRI will not be isolated. The gravitational pertur-
bations from distant stars, etc. will serve the same role in

perturbing the orbits as numerical errors might on a com-
puter. The end result—that the orbit is apparently ergo-
dic—is the same.

B. Frequency component analysis

The above conclusions are supported by a frequency-
domain analysis of the � and z motion in the two regions.
The absolute values of Fourier transforms of ��t� and z�t�
are plotted in Figs. 8 and 9. Figure 9 shows an absence of
clearly identifiable frequency peaks for geodesics in the
inner region, a result consistent with full-blown chaos. By
contrast, Fig. 8 shows discrete frequency peaks in the outer
region. Generally such frequency peaks, corresponding to
harmonics of a few fundamental frequencies, occur in
problems with a full set of isolating integrals. We find
that the frequency components measured for the � and z
motion in the outer region can be represented as low order
harmonics of two fundamental frequencies at a high level
of precision (1 part in 107 for the first �10 harmonics).
This multiperiodicity of the geodesics implies that the
gravitational waveforms will also be multiperiodic.
Indeed, we find that an approximate gravitational wave-
form, constructed using a semirelativistic approximation
for the gravitational-wave emission (as used to construct
Kerr EMRI waveforms in [25]), is also triperiodic (the
third frequency arises from the � motion since the ob-
server is at a fixed sky location). The absolute value of the
Fourier transform of the h��t� component of this gravita-
tional waveform is also plotted in Fig. 8 and is clearly

FIG. 8. Absolute values of the Fourier transforms of ��t� (solid
line), z�t� (dashed line), and the gravitational-wave component
h��t� (dotted line) in the frequency domain for an orbit in the
outer region of Fig. 4. The frequency is displayed in units of
1=M; the amplitude scaling is arbitrary.
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FIG. 7. Poincaré map for a geodesic in the inner region of
Fig. 4.
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multiperiodic. This periodicity has important consequen-
ces for data analysis and parameter extraction.

C. Comparison to other results

Our results are consistent with previous work by other
authors who have found chaotic geodesic motion in various
spacetimes. Generally, chaotic motion only occurs in the
strong-field region close to the central object, and for a
limited range of geodesic parameters. As an example,
Guéron and Letelier [17] found chaos in a prolate Erez-
Rosen spacetime, which represented a deformation of a
Schwarzschild black hole. They demonstrated that, for a
particular value of the energy and angular momentum,
when the deformation parameter had a value k2 � �5,
there was a single allowed region of bounded motion, but
for k2 � �5:02 the region split into two separate regions.
After the split, orbits in the inner region appeared chaotic
while those in the outer region appeared regular. For the
merged region, orbits that passed into the inner part also
appeared ergodic while those that were purely in the outer
part looked regular. This is qualitatively very similar to
what we have found in the Manko-Novikov spacetime,
although we find chaotic motion only when � � 0, while
Guéron and Letelier presented examples for both a per-
turbed nonspinning black hole and a spinning black hole.
As a test of our codes, we repeated Guéron and Letelier’s
calculation and found consistent results. As well as provid-
ing another example of chaos for relativistic geodesics, the
results here show some new features. In particular, the

inner allowed region appears for any q > 0 and as far as
we have been able to ascertain the motion is always ergodic
in that region. This contrasts to the spacetime considered
by Guéron and Letelier, in which chaotic motion exists
only for a small range of k2 (by the time k2 has increased to
k2 � �5:1, the motion is no longer apparently ergodic).
Previous authors have also not considered the issue of
accessibility of the ergodic region to stars, and we discuss
that in the next subsection.

Sota et al. [14] discussed what might cause chaos in
relativistic geodesic motion, and suggested that it might
arise either due to a change in the signs of the eigenvalues
of the Weyl tensor, which would lead to ‘‘local instability,’’
or due to the presence of homoclinic orbits. The Manko-
Novikov spacetimes do contain homoclinic orbits, but Sota
et al. [14] found that this only led to chaos in nonreflection-
symmetric spacetimes, so this explanation probably does
not apply here. We have not explored the properties of the
eigenspace of the Weyl tensor for these spacetimes, but
‘‘local instability’’ could be a plausible explanation for our
results. The CTC region of the Manko-Novikov spacetime
might also be causing the ergodicity. The region where
ergodic motion occurs touches the CTC region at a single
point, so the singular behavior of the metric as the CTC
region is approached might explain the observed behavior,
either by causing a region of ‘‘local instability’’ or through
some other mechanism.

We note that in the regime where chaos occurs, the
perturbation to the Kerr metric cannot be regarded as
purely quadrupolar, but the deviations in the higher multi-
pole moments are also significant. This is similar to the
Newtonian result described in Appendix A since we find
chaos in the Newtonian quadrupole-octupole potential but
not a pure quadrupole potential. The relativistic results are
somewhat different, however, since we find chaos only for
� � 0, so for these spacetimes we also need a nonzero
current dipole moment to observe chaotic behavior.

D. Accessibility of the ergodic domain

While the existence of ergodic motion is mathematically
interesting, an important question for EMRIs that has not
been addressed so far is whether ergodicity could ever be
observed in nature. In other words, is it possible, during the
course of an inspiral, for a captured object to find itself on
an ergodic geodesic?

In typical astrophysical scenarios, the inspiraling com-
pact object will start out far away from the central body
with energy close to 1 [1]. Unless the angular momentum is
very small (which in the Kerr spacetime would represent an
object on a plunging orbit), this will correspond to an orbit
in the outer region of allowed motion if two regions exist,
so the orbit will initially be regular. As the star inspirals,
the energy and angular momentum will gradually change
and this causes the separation between the outermost point
of the inner region of bound motion and the innermost

FIG. 9. Absolute values of the Fourier transforms of ��t� (solid
line), z�t� (dashed line), and the gravitational-wave component
h��t� (dotted line) in the frequency domain for an orbit in the
inner region of Fig. 4. The frequency is displayed in units of
1=M; the amplitude scaling is arbitrary.
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point of the outer region, ��, to change. For example,
when E � 0:99 and Lz � 4:33M in a Manko-Novikov
spacetime with � � 0:9, and q � 0:95, we find that
��=M � 6:4. When E � 0:95 and Lz � 3M in the same
spacetime, the separation between regions is only �� �
0:27M. For sufficiently small choices of energy and angu-
lar momentum (e.g., E � 0:92 and Lz � 2:5M) only a
single region remains. This suggests that the two regions
will come closer together as energy and angular momen-
tum are radiated away during an inspiral, until they even-
tually merge. We conjecture that d����=dt is always
negative; that is, the two regions are always merging rather
than separating. To test this conjecture, we must explore
the behavior of �� along an extreme-mass-ratio inspiral
characterized by slowly evolving E and Lz.

To do this, we use an approximate scheme to evolve the
energy and angular momentum during an inspiral. Our
scheme is based on combining exact relativistic expres-
sions for the evolution of orbital elements with approxi-
mate post-Newtonian formulae for energy and angular-
momentum fluxes. This scheme was previously devised
to describe EMRIs into Kerr black holes [26] and has
been shown to give reliable results in that context. For
the current calculation, we must augment the fluxes with
an additional post-Newtonian term to represent the effect
of the anomalous quadrupole moment q on the evolution of
energy and angular momentum. A Kerr black hole has
quadrupole moment M2=M

3 � ��2. It is the quadrupole
moment that leads to the lowest order terms in �2 in the
expressions for the energy and angular momentum radiated
during an inspiral. Therefore, to include the excess quad-
rupole moment, we just change the �2 terms in the flux
expressions to �2 � q, while leaving the lower order terms
unchanged (this approach was also used in [27]). We then
numerically find the roots of the effective potential Veff �
0 in the equatorial plane at various times and compute the
evolution of �� along the inspiral.

The result of one such computation of �� is plotted in
Fig. 10. That figure corresponds to an inspiral in a space-
time with � � 0:9, and q � 0:95. The inspiral starts out at
� � 100M with an orbital inclination of 60 degrees and
initial eccentricity e � 0:8 (these orbital parameters cor-
respond to E � 0:9982 and Lz � 5:0852M) and proceeds
until plunge. The separation between the inner and outer
bounded regions gradually shrinks, until the two regions
merge (on the plot, this is shown as �� � 0). Afterward,
the bounded regions remain joined until eventually merg-
ing with the plunging region.

We have found the same qualitative behavior described
above for a wide range of parameter choices. Therefore, in
all these cases, our conjecture is true—the inspiraling
object can never find itself in the isolated inner region
where all orbits appear to be ergodic. We should point
out, however, that we have carried out this numerical
investigation only for a range of specific choices of �, q,

and initial orbital parameters, and have used an approxi-
mation to the energy and angular momentum radiated
during an inspiral. This is therefore not a definitive proof
that chaotic motion can never be observed in the course of
an inspiral in the Manko-Novikov spacetime.

Assuming this evolution really is typical, there are two
important consequences. First, an inspiraling object can
never end up in the inner of two allowed regions of bound
motion, where ergodic motion is prevalent. Second, inspi-
rals always start out in a phase where the motion is regular.
This is very important, since it will allow the systems to be
detected in this early inspiral stage by gravitational-wave
detectors using matched filtering or a time-frequency
analysis. The inspiraling object will eventually end up in
the merged region formed after the two regions of bounded
motion converge. Both ergodic and regular geodesics exist
in that region, so in principle the particle could find itself
on an ergodic orbit. However, most orbits in the merged
region appear to be regular so it would require fine-tuning
to put the object onto such a geodesic (e.g., the ‘‘neck-
traversing’’ geodesics discussed earlier). It thus seems
unlikely that this would occur in practice.

Although these results apply only to the Manko-
Novikov family of spacetimes, the conclusions are consis-
tent with other examples of chaotic geodesics in relativity.
For instance, in the prolate Erez-Rosen spacetime consid-
ered in [17], if an object had arrived in the region where
ergodic motion is observed during the course of an inspiral,
its orbital energy and angular momentum would have been
larger earlier in the inspiral. However, if either the energy
or angular momentum is increased from the values that
give ergodic motion, the effective potential changes so that
it has only one allowed region, which includes ‘‘escape
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FIG. 10. The evolution of the separation �� between the inner
and outer bounded regions in the equatorial plane along an
inspiral in a Manko-Novikov spacetime with � � 0:9 and q �
0:95. �� � 0 means that the two regions have merged and there
is a single bounded region.
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zones’’ connected to the central singularity. All geodesics
in such a zone plunge into the central object in a short time
so an astrophysical inspiral could not persist through that
zone. We deduce that for that spacetime as well the ergodic
region is inaccessible to objects captured at large distances.

If there was some other mechanism that could put an
inspiraling object onto an ergodic geodesic, there is the
question of how the ergodicity could be identified in prac-
tice. Detection of EMRIs will rely on matched filtering or
possibly time-frequency techniques [1]. In either case, it
will probably not be possible to identify the gravitational
radiation as being emitted from an ergodic orbit, but only
that radiation from a regular orbit has ceased. It is clear
from Fig. 9 that during an ergodic phase, the emitted power
is spread among many harmonics, which will consequently
not be individually resolvable. This radiation will increase
the broadband power in our detector, whereas if the orbit
had plunged the radiated power would rapidly die away.
However, the energy released during a typical EMRI is
comparatively low, so it is unlikely that we could identify
the presence of such broadband power over the instrumen-
tal noise. Therefore, the chances are that we will not be
able to distinguish observationally between an inspiral that
‘‘ends’’ at a transition into an ergodic phase and one which
ends by plunging into a black hole.

One potentially observable signature of ergodicity
would be an inspiral that turned ‘‘off’’ and ‘‘on’’ as it
progressed through ergodic phases interspersed with regu-
lar phases. This would occur if the object could move into
and out of the inner ergodic region during an inspiral, but
the preceding analysis indicates that this should not hap-
pen. An object on a ‘‘neck-traversing’’ geodesic would also
show this behavior. However, the periods where the orbit is
ergodic serve to randomize the phase of the orbit in the
regular periods. A signal of this type would only be ob-
servable if each apparently regular phase could be indi-
vidually resolved with enough signal-to-noise ratio. This
would require a very narrow neck in order to trap the orbit
for many cycles in the regular zone. However, fine-tuning
of the energy and angular momentum is necessary to make
the neck very narrow, so if an object was on such an orbit,
the neck would be widening rapidly as energy and angular
momentum were radiated away. In practice, it is doubtful
that sufficient signal-to-noise would accumulate to allow a
detection to be made before the neck widened too much.

We conclude that, for astrophysically relevant inspirals
in the Manko-Novikov spacetime family, an object would
probably not end up on an ergodic geodesic. If some other
mechanism conspired to put an object on such an orbit, it is
unlikely that we would be able to identify this in
gravitational-wave observations. If these findings carry
over to a more generic class of spacetimes, then chaotic
motion is merely a mathematical curiosity which is un-
likely to manifest itself practically or be important for
gravitational-wave data analysis considerations.

IV. LAST STABLE ORBIT

During an inspiral into a Kerr black hole, an EMRI will
evolve quasistationarily through a sequence of near-
geodesic orbits as orbital energy and angular momentum
are radiated away. There is a minimum energy (which is
dependent on angular momentum) for which bound orbits
exist. When the inspiral reaches that separatrix, the object
will rapidly plunge into the central body. The gravitational
radiation emission undergoes a transition at this point, and
so the frequency of this last stable orbit is in principle
another quantity that is observable from the detected gravi-
tational waves. For a Kerr inspiral, the ‘‘transition’’ is a
rapid die-off in the gravitational-wave emission as the
particle plunges into the black hole. If the central object
is not a black hole, the radiation may persist for longer after
the last stable orbit is passed [7], but there will still be a
significant qualitative change in the emitted radiation as
the orbit changes suddenly at that point. We focus on the
innermost stable circular, equatorial orbit in this analysis,
since this is well defined in these spacetimes.

A. Circular, equatorial orbits

The geodesic equations for an arbitrary spacetime (8)
may be written in the alternative form
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For a circular, equatorial orbit in an axi- and reflection-
symmetric spacetime of the form (7), d�=d� � dz=d� �
d2�=d�2 � 0; hence the �-component of the geodesic
equation (14) gives

 @�g�� _�2 � 2@�gt� _t _��@�gtt _t2 � 0; (15)

in which a dot denotes d=d� as before. We can thus express
the azimuthal frequency as observed at infinity �� � _�= _t
in the form

 �� �
�@�gt� �

�������������������������������������������������
�@�gt��2 � @�gtt@�g��

q
@�g��

; (16)

where the �=� signs are for prograde and retrograde
orbits, respectively. In the equatorial plane, the right-
hand side is a function of the spacetime parameters and
� only, so given a particular choice of azimuthal frequency
��, Eq. (16) can be inverted to determine the value of �
such that a circular orbit at that � has frequency ��.

Equation (11) provides another relation between _t and
_�, from which we can deduce

 

_t � ��gtt � 2��gt� ��2
�g���

��1=2�; (17)

and then the energy and angular-momentum equations (10)
give us E and Lz as a function of � for circular, equatorial
orbits.
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B. Innermost stable circular orbit

The location of the innermost stable circular orbit
(ISCO) in the equatorial plane can be found using the
effective potential (13). Circular, equatorial orbits are lo-
cated at simultaneous zeros and turning points of Veff ,
where Veff � @Veff=@� � @Veff=@z � 0. As we will see
in Sec. V the second derivatives of Veff determine the
frequencies of small oscillations about the circular orbit.
For the circular orbit to be stable, we need the orbit to sit at
a local maximum of Veff , i.e., we require @2Veff=@�

2 and
@2Veff=@z2 to be negative. In the following we will use
~V����� ( ~Vzz���) to denote the value of @2Veff=@�

2

(@2Veff=@z
2) evaluated for the circular, equatorial orbit at

radius �. For the Kerr spacetime, ~Vzz���< 0 at all radii,
but ~V����� has a single root at a critical radius �ISCO. This
tells us that the orbit becomes radially unstable at that
point, which defines the ISCO. For � � 0, �ISCO �
4:90M, while for � � 0:9, �ISCO � 1:25M for prograde
orbits and �ISCO � 7:705M for retrograde orbits. Note
that � is a cylindrical Weyl coordinate, which is why
these results differ from the familiar black-hole ISCO
radii, which are normally quoted in Boyer-Lindquist
coordinates.

For the Manko-Novikov solutions with � � 0, the shape
of the functions ~V����� and ~Vzz��� does not change sig-
nificantly as q is increased with q > 0; ~Vzz���< 0 every-
where and ~V����� � 0 has a single solution that defines the
ISCO. However, as jqj is increased with q < 0, there is a
transition in behavior at q � �0:163. For q & �0:163, the
function ~V����� has two zero-crossings. Thus, in addition
to the radially stable circular orbits at large radii, we find
additional such orbits exist very close to the central singu-
larity. If jqj is increased still further, the two roots converge
at q � �0:654 and for q & �0:654 radially stable orbits
exist at all values of �. However, at the point where the
second branch of the radial roots appears, there is also a
transition in the shape of ~Vzz���, so that there are now

orbits which are vertically unstable. For q & �0:163, the
ISCO is defined by this vertical instability, rather than the
radial instability characteristic of the Kerr spacetime, and
Manko-Novikov spacetimes with q > 0. In the range
�0:654 & q & �0:163, there are two regimes where sta-
ble circular orbits exist—an outer zone with � > �ISCO,
and an inner zone with ~�ISCO < �< �OSCO (we use
‘‘OSCO’’ to indicate ‘‘outermost stable circular orbit’’
and ~�ISCO to denote the ISCO for the inner set of circular
orbits). The energy and angular momentum of an orbit at
the OSCO are greater than the energy and angular momen-
tum at the ISCO of the outer zone, �ISCO. Thus, an object
inspiraling from large distances on a circular, equatorial
orbit will reach �ISCO and plunge into the central body,
rather than finding itself in the inner range of circular
orbits. Compact objects could only find themselves in the
inner range if they came in on an eccentric/inclined orbit
and then radiated away energy and angular momentum
in exactly the right proportions. It is therefore unlikely
that this inner zone would be populated in practice.
However, any object on a circular, equatorial orbit in this
inner zone would reach ~�ISCO and then plunge into the
central body.

In Fig. 11 we show the location of the ISCO as a function
of q for spacetimes with � � 0. We also show the orbital
frequency at the ISCO as a function of q, computed using
Eq. (16). For spacetimes with spin, the behavior is quali-
tatively similar, but there are now two ISCO radii, corre-
sponding to prograde and retrograde orbits, respectively.
We show results for a spin of � � 0:9 in Fig. 12. We note
that the ISCO radius is always outside the boundary of the
causality-violating region of the spacetime. For � � 0 and
q > 0, the ISCO radius is determined by the energy at
which the outer allowed region for bound motion (which
is a single point for a circular, equatorial orbit) merges with
the inner allowed region. In that case when the object
reached the ISCO it would undergo a transition onto an
eccentric/inclined geodesic.
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FIG. 11. Properties of the equatorial ISCO in spacetimes with � � 0, as a function of q. We show the � coordinate of the ISCO (left
panel) and the dimensionless frequency of the orbit at the ISCO (right panel). As described in the text, the ISCO radius has three
branches, depending on whether it is determined by one of the two branches of radial instability or the branch of vertical instability.
These branches are indicated separately in the diagram. For values of q where all three branches are present, the dashed line denotes
the OSCO and the dotted line denotes ~�ISCO as discussed in the text. Allowed orbits lie above the curve in the left panel, and below the
curve in the right panel.
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The value of the ISCO frequency depends not only on q
but also M and �. However, as we shall discuss in the next
section, it is possible to measure these other parameters
using precessions measured when the orbit is in the weak
field. Thus, the ISCO frequency is a powerful probe of the
nature of the spacetime since it can be very different even
for comparatively small deviations from Kerr.

V. PERIAPSIS AND ORBITAL-PLANE
PRECESSIONS

In Sec. III we saw that astrophysically relevant orbits in
the Manko-Novikov spacetime are multiperiodic to high
precision. In such cases, there is no smoking-gun signature
that indicates the presence of ‘‘bumpiness’’ in the space-
time. Instead, the imprint of the spacetime bumpiness will
be observationally apparent in the location of the last stable
orbit, as discussed in the previous section, and in the
following ways: (1) in the three fundamental frequencies
of the gravitational waves generated while the inspiraling
object is on an instantaneous geodesic orbit; (2) in the
harmonic structure of the gravitational-wave emission,
i.e., the relative amplitudes and phases of the various
harmonics of the fundamental frequencies; and (3) in the
evolution of these frequencies and amplitudes with time as
the object inspirals. A full analysis of the accuracies that
could be achieved in observations would involve comput-
ing gravitational waveforms in the bumpy spacetimes,
performing a Fisher-Matrix analysis to account for pa-
rameter correlations, and comparing to a similar analysis
for Kerr. That is beyond the scope of this paper. However,
we can examine the first of these observational consequen-
ces by comparing the fundamental frequencies between the
bumpy and Kerr spacetimes.

The complication in such an analysis is to identify orbits
between different spacetimes. Identifying orbits by the �
and z coordinates is not gauge invariant, since the meaning
of these coordinates depends on the spacetime structure.
Identifying orbits via the energy and angular momentum is
gauge invariant, but these quantities are not directly mea-
surable observationally. However, circular orbits in the

equatorial plane of the spacetime are characterized by a
single observable—the azimuthal frequency of the orbit.
We can use this frequency to identify circular, equatorial
orbits in different spacetimes.

Precession frequencies are absent in exactly circular,
equatorial orbits. However, if the circular orbit is perturbed
radially, it will undergo small oscillations at the radial
epicyclic frequency, which is characteristic of the periapsis
precession frequency at that radius. Likewise, if the orbit is
perturbed vertically it will undergo small oscillations at the
vertical epicyclic frequency, which is characteristic of the
orbital-plane precession frequency at that radius. We thus
compare these epicyclic frequencies, as a function of the
circular orbital frequency, between Kerr and bumpy space-
times. This comparison was employed by Ryan, who used
it to derive his theorem stating that all spacetime multipole
moments are encoded in the gravitational waves generated
by nearly circular, nearly equatorial EMRIs [2].

An eccentric equatorial orbit can be characterized by
two observables—the orbital frequency and the periapsis
precession frequency. These two frequencies can therefore
be used to identify orbits in different spacetimes (provided
there is an orbit with corresponding frequencies in the Kerr
metric). Likewise, the orbital-plane precession frequency
can be used to identify inclined orbits between space-
times.1 With such an identification, differences in the
multipole structure of the spacetime will show up only in
the relative amplitudes of the harmonics and in the evolu-
tion of the fundamental frequencies over the inspiral. We
will discuss this some more at the end of this section, but a
full analysis requires treatment of inspiral in an arbitrary
spacetime and is beyond the scope of the current paper.
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FIG. 12. As Fig. 11, but now for a spin of � � 0:9. There are now two ISCO curves, one for prograde orbits and one for retrograde
orbits. The allowed range of orbital frequencies is given by the region in between the two curves in the right-hand panel.

1The ‘‘orbital plane’’ is not well defined in the strong field.
However, we know the gravitational waves should be triperiodic
and, in the weak field, the three periods correspond to the orbital
period and the two precessions. When we refer to ‘‘orbital-plane
precession frequency’’ we really mean the frequency component
of the orbit that corresponds to orbital-plane precession in the
weak field. This will be the frequency of the vertical motion,
averaged over many orbits.
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A. Epicyclic frequencies

The frequency of epicyclic motion can be derived by
perturbing a circular, equatorial orbit in either the radial or
vertical direction. The second-order geodesic equa-
tions (14) for z and � take the form

 

d
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�
2gXX

dX
d�

�
� @Xgtt

�
dt
d�

�
2
� 2@Xgt�
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�
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�
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�
dz
d�

�
2
: (18)

Here X denotes either � or z. The dependence on dt=d� and
d�=d� can be eliminated by using the energy and angular-
momentum conservation equations to express these in
terms of E, Lz, �, and z, as in Eq. (12). Using this form
of the equations we can take a circular, equatorial orbit,
� � �c, z � 0, and perturb it either in the radial direction,
� � �c � ��, z � 0, or in the vertical direction, � � �c,
z � �z. Considering the equations of motion at leading
order in the small orbital perturbation, it is easy to see that
the frequencies of these small epicyclic oscillations are
given by

 �g��E� gt�Lz
gttg�� � g

2
t�

�
2
�2
X �

1

2gXX

@
@X

�@Xgtt�g��E� gt�Lz�2 � 2@Xgt��g��E� gt�Lz��gttLz � gt�E�
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2
t��

2

�

�
1

2gXX

@
@X

�@Xg���gttLz � gt�E�2
�gttg�� � g

2
t��

2

�
: (19)

As before, X denotes either � (for the radial epicyclic
frequency ��) or z (for the vertical epicyclic frequency
�z). The same result can be derived starting from the
effective potential equation (13): the frequency �X is
determined by @2Veff=@X2 evaluated at the circular orbit.

B. Precessions

We are interested in precessions rather than the epicyclic
frequency. We define the periapsis precession as the num-
ber of cycles by which the periapsis advances per radial
period (i.e., over one complete epicyclic oscillation).
Likewise, the orbital-plane precession is defined as the
number of cycles by which the azimuthal angle to the
highest point of the orbit advances during one vertical
oscillation. These precessions, which we denote by pX,
are related to the epicyclic frequencies, �X, by

 pX �
��

�X
� 1: (20)

The behavior of the precessions can be understood in
terms of what happens in the weak field, far from the black
hole, and in the strong field, close to the ISCO. In the weak
field it is possible to derive expressions for the precessions
as functions of the orbital frequency. This was originally
done for nearly circular, nearly equatorial orbits by Ryan
[2], who demonstrated that the various spacetime multipole
moments enter the precession rate expansion at different
orders of �M���

�. This was the basis for a theorem that, in
principle, the weak-field precessions can be used to extract
the lowest order spacetime multipole moments. The weak-
field expansion of the precessions is summarized in
Appendix B.

In the strong field, we find that one or the other preces-
sion diverges at a certain frequency. This frequency corre-

sponds to the frequency of the ISCO. To understand what is
happening, we use the effective potential (13) and consider
radial oscillations. For the energy and angular momentum
corresponding to the circular, equatorial orbit at radius � �
�c, the effective potential in the equatorial plane takes the
form Veff��; z � 0� � � ~V������ ������ �c�

2. Here
~V��� is a function that is strictly positive for � > ��.
The radius �� is the other solution to Veff��; z � 0� � 0,
and �� <�c. As the ISCO is approached, the effective
potential develops a point of inflection at the location of the
turning point rather than a maximum since �� ! �c. The
epicyclic frequency for radial oscillations is �2

� / ~V��c��
��c � ���, which thus tends to zero as the ISCO is ap-
proached. The corresponding periapsis precession di-
verges. The radius �� corresponds to an unstable circular
orbit, and associated with any unstable circular orbit is a
bound, eccentric orbit that has an infinite period—the
object comes in from larger radii, and asymptotically
approaches the radius of the circular orbit. This is referred
to as a ‘‘homoclinic’’ orbit, or as a ‘‘zoom-whirl’’ orbit in
the EMRI literature. As the ISCO is approached, a small
perturbation from the location of the circular orbit will put
the object onto an orbit that is close to the homoclinic orbit
associated with the unstable circular orbit. Hence, it takes a
very long time for the object to complete a radial oscil-
lation, but it is moving rapidly in the azimuthal direction
the whole time, building up a large periapsis precession.

This understanding leads us to expect the precession to
diverge at the location of the ISCO, and this divergence
should be like ��c � �ISCO�

�1=2, or ���;ISCO ����
�1=2.

The above argument applies to an ISCO defined by a radial
instability (as in the Kerr metric). As we saw in Sec. IV, the
ISCO in the Manko-Novikov spacetimes can be deter-
mined by the onset of a vertical instability. In that case,
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the above argument still applies, but it is now the orbital-
plane precession that will diverge as the ISCO is ap-
proached. This provides another potential smoking gun
for a deviation from the Kerr metric. The divergence in
the precession at the ISCO arises as a result of one of the
two epicyclic frequencies going to zero. It is these frequen-
cies that will in principle be observable in the gravitational
waves. If an inspiral is observed starting in the weak field
and up until the last stable orbit (LSO), the different
frequency components could be tracked, and one fre-
quency will tend to zero as the LSO is approached. This
is in principle an observable, and if it is the orbital-plane
precession that goes to zero the central body cannot be a
Kerr black hole. A more careful treatment of the
gravitational-wave emission will be required to understand
how practical it will be to make such observations.

In Figs. 13–16 we show the precessions as a function of
M�� for a variety of values of q. In Figs. 17–19 we
present the same results, but now we show the differences
between precessions in a bumpy spacetime with a given q
and precessions in the Kerr spacetime with the same spin
parameter �: �pX � pX � pKerr

X . The variable �pX repre-
sents the number of cycles of difference, so for instance a
value of �p� � 0:1 means that the orbits in the two space-
times, although having the same azimuthal frequency,
would drift an entire cycle out of phase in the epicyclic
radial oscillation within ten radial orbits. We do not show
results for the difference in the orbital-plane precession for
� � 0, since there is no orbital-plane precession in the
Schwarzschild spacetime and hence that plot would be
identical to Fig. 15.

Figures 13 and 17 show the periapsis precession r�����

for � � 0 while Figs. 14 and 18 show the periapsis pre-
cession for � � 0:9. We see that as the value of q decreases
from zero, the periapsis precession decreases relative to the
corresponding value in the Kerr/Schwarzschild spacetime.
By contrast, if q is increased from zero, the periapsis
precession increases. In spacetimes with nonzero spin,
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the difference is more extreme for prograde orbits than for
retrograde orbits. This is presumably because retrograde
orbits do not get as close to the central object, and so do not
‘‘feel’’ the strong-field deviations in the bumpy metric.

For q � �0:5, the radial epicyclic frequency ������

approaches zero as the ISCO is approached and the peri-
apsis precession r� goes to infinity for the reasons de-
scribed above. This is not true of the q <�0:5
spacetimes shown, since for those the ISCO is defined by
a vertical instability. Figure 15 shows the orbital-plane
precession rz���� for � � 0 and Figs. 16 and 19 show
the orbital-plane precession for � � 0:9. As for the case of
the periapsis precession, the orbital-plane precession be-
haves qualitatively differently depending on the sign of q.
The orbital-plane precession is greater for q < 0 and
smaller for q > 0 compared to the nonbumpy value. As

expected, the orbital-plane precession tends to a constant at
the ISCO for q >�0:5, while it diverges for q <�0:5,
since the ISCO for the latter spacetimes is defined by a
vertical instability as discussed earlier.

Previous authors have looked at precessions in bumpy
spacetimes. As mentioned above, Ryan [2] derived a weak-
field expansion for the precessions. Collins and Hughes
[11] looked at precessions for eccentric equatorial orbits in
a perturbed Schwarzschild spacetime, and Glampedakis
and Babak [12] did the same for a perturbed Kerr black
hole. However, both pairs of authors did this by comparing
orbits with the same coordinates, which is rather unphys-
ical. Our results are consistent with this previous work in
the weak field, but our calculation is the first that can be
applied in the strong field, since Ryan’s work used a weak-
field expansion, and the other work used perturbative
spacetimes that break down close to the central body.
The behavior in the approach to the ISCO is thus a new
result.

It is possible to fit the precessions as a sum of a weak-
field expansion (as given in Appendix B) plus a term

A=
������������������������������
��;ISCO ���

q
. However, only a comparatively few

weak-field terms are required to give a good fit, implying
that the divergence at the ISCO limits the number of multi-
pole moments that can be recovered from such an expan-
sion. To quantify this statement properly, we must do a full
analysis, that includes the effect of inspiral, uses an instru-
mental noise curve to restrict the observable bandwidth,
and accounts for parameter correlations via the Fisher
Matrix. We can do this by constructing semirelativistic
inspiral waveforms for bumpy spacetimes in the same
way that has been used for Kerr inspirals [25,26]. This is
beyond the scope of the present paper. However, there are
several things that we can take away from the current
results—the location of the ISCO has a strong influence
on precessions that could be observable, in particular the
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nature of the instability that defines the ISCO could be a
clear indicator of a non-Kerr system; precessions can be
very different in the strong field in the presence of a
deviation; circular orbits with frequencies very different
from the Kerr value exist in some bumpy spacetimes, so
another observable signature would be that an inspiral
persists at frequencies inside the Kerr ISCO.

C. Effect of eccentricity

As discussed above, the measurement of the precessions
as a function of orbital frequency for nearly circular, nearly
equatorial orbits would in principle allow measurement of
the spacetime multipole moments [2]. In practice, however,
the precessions will only be manifest in the observed
gravitational waves if the orbit is not circular and equato-
rial, so we need to understand how the dependence of the
precessions on azimuthal frequency differs when we relax
the assumption of near-circularity. In the following, we
shall focus on the periapsis precession of eccentric but
equatorial orbits.

The eccentricity of an orbit modifies two things—(1) the
frequency associated with the periapsis precession as a
function of the orbital frequency; (2) the relative ampli-
tudes of different harmonics of these two frequencies in the
observed GWs. To accurately compute the dependence of
the harmonic structure on eccentricity for a generic orbit,
we need to know details of GW generation in a spacetime
with arbitrary multipole moments. This is a difficult prob-
lem, so we focus on the effect of eccentricity on the
periapsis precession frequency itself. We consider an ec-
centric equatorial orbit in the Kerr spacetime, and use ��

to denote the average azimuthal frequency (i.e., the total
advance in � over one radial period, divided by the period
of the radial motion). We define an orbital eccentricity, e,
such that the ratio of the Boyer-Lindquist radii of the
periapsis, rp, and apapsis, ra, of the radial motion is
rp=ra � �1� e�=�1� e�. With these definitions, the peri-
apsis precession as defined above can be found to be
 

p� � 3
� M��

�1� e2�3=2

�
2=3
� 4�

� M��

�1� e2�3=2

�

�
3�18� 7e2 � 2�2�
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� M��

�1� e2�3=2

�
4=3

� �34� 18e2��
� M��

�1� e2�3=2

�
5=3
� � � � ; (21)

where we are expanding in the weak field, M�� � 1. The
corresponding result for a spacetime with an excess quad-
rupole moment can be found at lowest order by replacing
the term in �2 with �2 � q, since the quadrupole moment
of a Kerr black hole is �2 as discussed earlier.

In the circular limit, e � 0, the expansion (21) allows us
to extract M from the coefficient of �2=3

� , � from the

coefficient of ��, q from the coefficient of �4=3
� , etc.

However, if we expand to lowest order in the eccentricity,
e, it is clear that the effect of a small excess oblate
quadrupole moment q > 0 could be mimicked, at leading
order, by an eccentricity evolving as e2 � 2�M���

�2=3q.
The two possibilities are then distinguished by knowing
how the eccentricity should evolve with M��.

The expansion (21) contains redundancy, since the co-
efficient of M�5=3

� also depends only on the lowest current
moment, �. If the eccentricity of the orbit did not evolve
with time the first four terms in the expansion would
determine M, �, q, and the eccentricity e, and higher terms
would determine the remaining multipole moments as in
the circular case. However, the eccentricity does evolve
with time. In practice, we will only observe EMRIs as they
evolve through a finite range of frequencies (determined by
the detector sensitivity). During that period, the evolution
will be driven entirely by gravitational-wave emission.
This means that we can quantify the eccentricity of the
orbit by a single number—the periapsis at which the
eccentricity was equal to 1 if we integrated the inspiral
backwards in time, assuming a purely GW driven inspiral.
Specifying this parameter and the multipole structure of
the spacetime determines the eccentricity as a function of
M��. Determining this relationship, however, requires
knowing the details of GW emission in an arbitrary
spacetime.

A complication arises because the ratio M��=�1�
e2�3=2 tends to a constant at the point where e � 1.
Assuming that this occurred in the weak field, M��=�1�
e2�3=2 � 1, this can be seen by considering the leading-
order term in de=d�� in the weak field (see for instance
[26])

 

de
d�M���

�
��304� 121e2��1� e2�e

3�M����96� 292e2 � 37e4�
: (22)

Denoting X � 1� e2 and expanding in the limit M�� !

0, X ! 1, we find

 

dX
d�M���

�
2

3

X
M��

) X � X0�M���
2=3 �O��4=3

� �

(23)

in which X0 is a constant that is related to the periapse at
‘‘capture’’ when X � 0. If the capture occurs in the strong
field, the ratio M��=�1� e

2�3=2 would still tend to a
constant if we integrated backward until e! 1. Although
the inspiral would not be observed as e! 1, that section of
the inspiral does affect the portion that we can observe.

We now substitute the asymptotic behavior (23) into
Eq. (21), to obtain an expansion of the periapsis precession
as a function of the angular frequency in the form p� �
a0 � a2�M���

2=3 � a3�M��� � � � � , where a0, a2, a3,
etc. are constants. In contrast to the circular case, each of
these coefficients depends on all the spacetime multipole
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moments, so multipole extraction from the periapsis pre-
cession expansion is no longer straightforward. The reason
for this qualitative difference between circular and eccen-
tric orbits is that it is only possible to observe an eccentric
inspiral over a finite range of periapsis, since the orbit is
captured with a certain finite periapsis, while a circular
orbit could inspiral from infinity. The various multipole
moments have different radial dependencies, thus if one
can observe the precession frequency at any radius it
makes sense that all the moments can be separately ex-

tracted, while this is more difficult if only a finite section of
the spacetime is explored.

In practice, this difficulty also arises when observing a
circular inspiral, since the radiation can only be detected in
a certain frequency range. One can parametrize an obser-
vation by the frequency at the start of the observation,
�0 � ���t � 0�. A Taylor series expansion of the preces-
sion (see Eq. (B15) in the appendix) then gives

 

p� �
�
3�M�0�

2=3 � 4��M�0� �
3

2
�9� �2 � q��M�0�

4=3 � � � �

�

� �2�M�0�
2=3 � 4��M�0� � 2�9� �2 � q��M�0�

4=3 � � � ��
�� ��0

�0

�

�
�

1

3
�M�0�

2=3 �
1

3
�9� �2 � q��M�0�

4=3 � � � �

��
�� ��0

�0

�
2
� � � �

� b0 � b1

�� ��0

�0
� b2

�
�� ��0

�0

�
2
� � � � (24)

In this kind of expansion the multipole moments again
contribute at all orders. However, provided the initial fre-
quency M�0 � 1, the dominant piece of the constant
term, b0, is �M�0�

2=3, so this term can be used to estimate
M. Similarly, the dominant piece of 2b0 � 3b1 is
4��M�0�, so this can be used to estimate �, and that
estimate of � can be used to improve the estimate of M
from b0. The dominant piece of b0 � b1 � 3b2 is �9�
�2 � q�=2�M�0�

4=3, so this can be used to estimate the
excess quadrupole moment q and so on. In the same way, if
an eccentric inspiral is observed in a regime where the
initial frequency is small (and hence the frequency at
capture was also small), we can use the same type of
expansion and use combinations of the coefficients to
successively extract each multipole moment and the initial
eccentricity. To do this requires an expansion of e2 � e2

0 as
a function of ��=�0 � 1. The necessary derivatives
de2=d�M��� are known in the weak field, and to lowest
order in the multipoles (see, for example, Ref. [26]).
However, this calculation is somewhat involved and be-
yond the scope of this paper.

The above discussion indicates that the periapsis pre-
cession rate can be used on its own to measure the multi-
pole moments from an eccentric equatorial inspiral,
although this is more difficult than for the circular, equa-
torial case. However, the value of the precession is not the
only observable. As mentioned earlier, the relative ampli-
tude of the various harmonics of the orbital frequencies is a
powerful probe of the orbital eccentricity. To exploit this
harmonic structure we also need to know how the ampli-
tudes of the harmonics depend on the spacetime multipole
moments. However, if the deviations from the Kerr metric
multipole structure are small, we could imagine using the
Kerr harmonic amplitude relation to estimate the eccen-

tricity (and inclination) of the orbit, and then use the
precessions to extract the multipole structure. Proper in-
sight can be gained using the approximate semirelativistic
waveforms described earlier or post-Newtonian expan-
sions of the gravitational waveforms. Such an investigation
will be an important extension of the current work.

VI. SUMMARY

In this paper we have discussed various observational
signatures that could leave an imprint on an EMRI gravi-
tational waveform if the spacetime in which the EMRI was
occurring deviated from the Kerr metric. We have seen that
some orbits in bumpy spacetimes lack a fourth integral of
the motion, and appear ergodic. Geodesics in the Kerr
spacetime have a complete set of integrals, so if an appar-
ently ergodic orbit was observed it would be a clear sig-
nature of a non-Kerr central object. However, regions of
ergodic motion only appear very close to the central object,
in a regime which is probably inaccessible to a star
inspiraling from large distances. Most astrophysically rele-
vant orbits are regular and appear to possess an approxi-
mate fourth integral of the motion, and the orbits are
triperiodic to high accuracy. The deviations of the central
body from Kerr then manifest themselves only in the
changes in the three fundamental frequencies of the motion
and the relative amplitude of the different harmonics of
these frequencies present in the gravitational waves. For
nearly circular, nearly equatorial orbits, the dependence of
the precession frequencies on the orbital frequency is well
fit by a combination of a weak-field expansion that encodes
the multipole moments at different orders, plus a term that
diverges as the innermost stable circular orbit is ap-
proached. The frequency of the ISCO and its nature
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(whether it is defined by a radial or vertical instability) is
another observable signature of a non-Kerr central object.

To derive these results, we have focussed on a particular
family of spacetimes due to Manko and Novikov [13].
However, we expect the generic features of the results in
the weak field and as the ISCO is approached to be true for
a wide range of spacetimes. Chaos has been found for
geodesic motion in several different metrics by various
authors [14–18]. In all cases, however, the onset of chaos
was qualitatively similar to what we found here—it oc-
curred only very close to the central object, and for a very
limited range of orbital parameters. The conclusion that
gravitational waves from ergodic EMRIs are unlikely to be
observed is thus probably quite robust.

Precessions for spacetimes that deviate from the Kerr
metric have also been considered by several authors
[2,11,12]. Our results agree with this previous work in
the weak field as they should. However, the results in the
present paper are the first that are valid in the strong field
since previous work was either based on a weak-field
expansion [2] or a perturbative spacetime [11,12]. The
main feature of the precessions in the strong field—the
divergence of one of the precessions as the ISCO is ap-
proached—is expected from spacetime-independent con-
siderations and therefore should be a general feature of
inspirals in any spacetime. The present work, and earlier
research [11,12], has also considered only solutions that
first differ from the Kerr metric in the mass quadrupole
moment. The Manko-Novikov solutions [13] include
spacetimes that first differ at higher orders. While we
have not considered such solutions, we expect the generic
features to be similar. The precessions will be closer to the
Kerr values for a greater fraction of the inspiral, and the
ISCO will be at a different frequency, but the qualitative
behavior in the approach to ISCO should be the same.

The next step in understanding how gravitational-wave
detectors might identify non-Kerr central objects from
EMRI observations is to consider the gravitational wave-
forms produced during an inspiral. Any analysis should
account for both parameter correlations and the finite
bandwidth and observation time of gravitational-wave de-
tectors by using a Fisher-Matrix analysis. Glampedakis and
Babak [12] constructed approximate gravitational wave-
forms generated by orbits in a perturbed Kerr spacetime,
but they considered only waveforms from geodesics (i.e.,
not inspirals) and compared waveforms with the same
orbital parameters. These are not observable quantities
(unlike the frequency of the orbit which we used as a basis
for comparison here) and such a calculation does not
account for parameter correlations. Barack and Cutler
[27] did a full Fisher-Matrix analysis of this problem,
and estimated that a LISA observation of an EMRI could
measure the quadrupole moment of a body to an accuracy
of 10�3 while simultaneously measuring the mass and spin
to 10�4. That calculation was based on an approximate

waveform model devised to describe Kerr inspirals. The
expressions governing the inspiral were modified by add-
ing the leading-order effect of a quadrupole moment to the
energy and angular-momentum fluxes. The waveform gen-
eration part of the algorithm was left unchanged. Although
this result is a good guide, the calculation contained a
number of inconsistencies. For Kerr inspirals, semirelativ-
istic ‘‘kludge’’ waveforms based on combining exact geo-
desic motion with approximate gravitational-wave
emission formulae have proven to give accurate results
[25,26]. The same method could be used to produce wave-
forms for inspiral in the Manko-Novikov spacetimes, by
changing the geodesic equations and augmenting the in-
spiral fluxes appropriately. Such an approach will not gen-
erate totally accurate gravitational waveforms, but it will
reproduce the main features of the orbit—the precession
frequencies, the orbital shape, and the frequency of the
ISCO. A study of gravitational waveforms generated in
bumpy spacetimes will provide useful guidance for future
detectors such as to what precision an observation could
determine that an inspiral is an inspiral into a Kerr black
hole and how well observations can distinguish different
types of deviation from Kerr, e.g., an exotic central object
from a naked singularity from a Kerr black hole with
external matter.
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APPENDIX A: CHAOTIC MOTION IN
NEWTONIAN GRAVITY

The classic example from astrophysics of a system that
exhibits chaos in classical (Newtonian) gravity is the two
dimensional Hénon-Heiles potential V�r; �� � r2=2�
r3 sin�3��=3 (see [28] for example). Guéron and Letelier
[16] also found chaos in the Paczyńki-Witta potential
(� � M=�r� rS�, where rS � 2M is the Schwarzschild
radius) with a dipolar perturbation. Neither of these space-
times is reflection symmetric, so for a better analogy to the
relativistic spacetimes considered in this paper, we exam-
ine the Newtonian quadrupole-octupole potential

 

���; z� � �
M
r
�
M2

2r3

�
1� 3

z2

r2

�

�
M4

8r5

�
35
z4

r4 � 30
z2

r2 � 3
�
: (A1)
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Here, M, M2, and M4 denote the monopole (mass), quad-
rupole, and octupole multipole moments of the potential.
Stationarity and axisymmetry ensure that energy E and
angular momentum Lz � r2d�=dt are conserved as usual,
which leads us to the Newtonian analogue of the effective
potential equation (13)

 

1

2

��
dr
dt

�
2
�

�
dz
dt

�
2
�
� Veff�E;Lz; �; z�

�
1

2
�E2 � 1� �

L2
z

2�2 ����; z�;

(A2)

where we have replaced the standard Newtonian energy by
the relativistic expression �E2 � 1�=2 for consistency with
(13). The equation of motion in this potential takes the
usual form d2r=dt2 � �r�. If we take the multipole
moments to have the values M2 � 2M3 and M4 � 10M5,
and choose the angular momentum to be Lz � 1:7M, we
find that for a range of values of the energy E, bound orbits
occur quite close to the origin. For sufficiently large values
of E, there is a single allowed region for motion (defined by
Veff � 0). Orbits in that regime appear to be regular, and
show closed Poincaré maps. If the energy is reduced, the
allowed region eventually splits into two separate regions,
one bounded away from r � 0, and one connected to r �
0. Orbits in the outermost region after this transition exhibit

ergodic behavior. In Fig. 20 we show four plots. Two of
these plots are for an orbit with E � 0:82, which exhibit
regular behavior. The other two are for E � 0:81 and
exhibit ergodic behavior. We choose the initial conditions
of both orbits to be _� � 0 � z and � � 3M, with _z deter-
mined from the assigned energy (A2). The upper panels in
the figure show the orbit in the ��; z� plane, and the
boundary of the allowed region of motion (defined by
Veff � 0). The lower panels show Poincaré maps for the
two orbits. The ergodicity of the orbit with E � 0:81 is
quite evident from the Poincaré map. We also find that this
orbit fills up the entire allowed range of � and z. By
contrast, the regular orbit with E � 0:82 explores only a
narrow torus in space.

A thorough examination of when ergodicity appears in
this potential, as a function of energy, angular momentum
and the multipole moments M2 and M4 is peripheral to the
focus of this paper. However, the results presented here
provide a Newtonian example to which we can compare
the relativistic results of Sec. III.

APPENDIX B: WEAK-FIELD PRECESSIONS

1. Relativistic precession

In Boyer-Lindquist coordinates, the energy, angular mo-
mentum, and rest-mass conservation equations (10) and
(11) for geodesic motion in the Kerr metric can be used to
derive the equation of motion in the form (see for instance
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FIG. 20 (color online). Example of onset of chaos in the Newtonian quadrupole-octupole potential (A1). All plots are for orbits
which start with _� � 0 � z, �=M � 3 and have specific angular momentum Lz � 1:7M. The left-hand panels are for energy E �
0:82, while the right-hand panels have energy E � 0:81. The top two plots show zeros of the effective potential, Veff � 0, as defined by
Eq. (A2), and the paths followed by the orbits in the ��; z� plane. The bottom two plots are Poincaré maps for crossings of the z � 0
plane in each case.
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[29])

 

1

2

��
dr
dt

�
2
��

�
d�
dt

�
2
�
�
�E�r2 � a2� � aLz�2 ���r2 � �Lz � aE�2 � L2

zcos2�� a2cos2��1� E2��

2�E��r2 � a2�2=�� a2sin2�� � 2MaLzr=��2
; (B1)

where � � r2 � 2Mr� a2, and a � M�. The prograde
equatorial circular orbit at radius r has energy and angular
momentum

 E �
1� 2v2 � av3=M�����������������������������������������
1� 3v2 � 2av3=M

p ; (B2)

 Lz � rv
1� 2av3=M� a2v4=M2�����������������������������������������

1� 3v2 � 2av3=M
p ; (B3)

where v2 � M=r. The frequency of a prograde circular
orbit is given by

 �� �
d�
dt
�

�����
M
p

r3=2 � a
�����
M
p : (B4)

The epicyclic frequencies for radial and vertical perturba-
tions of the orbit are given by the second derivatives of the
right-hand side of Eq. (B1) with respect to r and � (the
right-hand side of Eq. (B1) is the effective potential for the
Kerr spacetime). To obtain the form of these frequencies in
the weak field, we wish to expand in 1=r. With some
manipulation and keeping terms up to r�5 only, we obtain
the expansion

 �2
� �

M

r3 � 6
M2

r4 � 6�
M5=2

r9=2
� 3�2 M

3

r5
� � � � ; (B5)

 �2
z �

M

r3 � 6�
M5=2

r9=2
� 3�2 M

3

r5
� � � � ; (B6)

where we use ��, �z to denote the radial and vertical
epicyclic frequencies to be consistent with the results ear-
lier in the paper. With further manipulation, expressions for
the precessions, pX, as a function of the orbital frequency,
��, may be derived

 p� � 3�M���
2=3 � 4��M��� �

3
2�9� �

2��M���
4=3

� 34��M���
5=3 � 1

2�135� 67�2��M���
2 � � � � ;

(B7)

 pz � 2��M��� �
3
2�

2�M���
4=3 � 8�2�M���

2 � � � �

(B8)

Results for retrograde orbits may be obtained by the sub-
stitutions �! ��, �� ! ���, and Lz !�Lz in the
above expressions (NB �� < 0 for retrograde orbits, so
��� is equivalent to j��j).

2. Precession due to a quadrupole moment

The precession induced by a quadrupole moment can be
derived using the Newtonian quadrupole potential

 � � �
M
r
�

1

2

Q

r3

�
1� 3

z2

r2

�
: (B9)

Here r �
���������������������������
x2 � y2 � z2

p
is the distance from the origin, z

is the vertical coordinate, and we will use � �
����������������
x2 � y2

p
to

denote the cylindrical polar radial coordinate. The radial
equation of motion in this potential takes the form
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and the energy, angular momentum, and orbital frequency
of a circular, equatorial orbit with radius � are

 E �
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M
2�
; Lz �
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(B11)

Differentiating Eq. (B10) twice with respect to � and z, we
find the epicyclic frequencies take the form

 �2
� �

M

�3 �
3

2
Q
M

r5
� � � � ; (B12)

 �2
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M
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3

2
Q
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� � � � (B13)

Hence we derive the precession frequencies
 

p� � �
3
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Q

M3 �M���
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pz �
3

2

Q

M3 �M���
4=3 � � � �

(B14)

The lowest order form of these expressions was also given
in Collins and Hughes [11], although they expressed the
precession in terms of a radial coordinate, rather than the
observable ��. We also use a slightly different definition
for the quadrupole moment Q so that it is consistent with
Q � ��2M3 for the Kerr metric. As we would expect, the
leading-order terms in these expressions agree with the
leading-order terms in �2 in the Kerr expressions.

Combining this result with Eqs. (B7) and (B8), we
obtain the weak-field precessions for the Manko-Novikov
solution with spin parameter � and excess quadrupole
moment q
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2=3 � 4��M��� �

3
2�9� �

2 � q��M���
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In the above, the lowest order term that is omitted is the
order at which the excess current quadrupole moment

would first contribute. This result is also given in Ryan
[2], although he quotes an expression for ~��=��, where
~�� is equal to �� ���. Our result is consistent with his
once this is taken into account. We note that some of the
terms in expression (B15) come from relativistic correc-
tions to the effect of the quadrupole moment. These cannot
be derived using only the results quoted in this appendix,
but are given in Ryan’s paper [2].

[1] P. Amaro-Seoane, J. R. Gair, M. Freitag, M. C. Miller,
I. Mandel, C. J. Cutler, and S. Babak, Classical Quantum
Gravity 24, R113 (2007).

[2] F. D. Ryan Phys. Rev. D 52, 5707 (1995).
[3] S. A. Hughes, AIP Conf. Proc. 873, 233 (2006).
[4] D. A. Brown, J. Brink, H. Fang, J. R. Gair, C. Li, G.

Lovelace, I. Mandel, and K. S. Thorne, Phys. Rev. Lett.
99, 201102 (2007).

[5] B. Carter, Phys. Rev. Lett. 26, 331 (1971).
[6] D. C. Robinson Phys. Rev. Lett. 34, 905 (1975).
[7] M. Kesden, J. R. Gair, and M. Kamionkowski, Phys. Rev.

D 71, 044015 (2005).
[8] N. Straumann and Z. Zhou, Phys. Lett. B 243, 33 (1990).
[9] S. Droz, M. Heusler, and N. Straumann, Phys. Lett. B 268,

371 (1991).
[10] S. A. Hughes, S. Drasco, E. E. Flanagan, and J. Franklin,

Phys. Rev. Lett. 94, 221101 (2005).
[11] N. A. Collins and S. A. Hughes, Phys. Rev. D 69, 124022

(2004).
[12] K. Glampedakis and S. Babak, Classical Quantum Gravity

23, 4167 (2006).
[13] V. S. Manko and I. D. Novikov, Classical Quantum

Gravity 9, 2477 (1992).
[14] Y. Sota, S. Suzuki, and K. Maeda, Classical Quantum

Gravity 13, 1241 (1996).
[15] P. S. Letelier and W. M. Viera, Classical Quantum Gravity

14, 1249 (1997).
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