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Abstract
Gravitational waves from the inspiral and coalescence of supermassive black-
hole (SMBH) binaries with masses m1 ∼ m2 ∼ 106M� are likely to be among
the strongest sources for the Laser Interferometer Space Antenna (LISA). We
describe a three-stage data-analysis pipeline designed to search for and measure
the parameters of SMBH binaries in LISA data. The first stage uses a time–
frequency track-search method to search for inspiral signals and provide a
coarse estimate of the black-hole masses m1,m2 and the coalescence time of
the binary tc. The second stage uses a sequence of matched-filter template
banks, seeded by the first stage, to improve the measurement accuracy of
the masses and coalescence time. Finally, a Markov chain Monte Carlo search is
used to estimate all nine physical parameters of the binary (masses, coalescence
time, distance, initial phase, sky position and orientation). Using results from
the second stage substantially shortens the Markov chain burn-in time and
allows us to determine the number of SMBH-binary signals in the data before
starting parameter estimation. We demonstrate our analysis pipeline using
simulated data from the first Mock LISA Data Challenge. We discuss our plan
for improving this pipeline and the challenges that will be faced in real LISA
data analysis.

PACS numbers: 04.25.Nx, 04.30.Nb, 04.80.Nn, 95.75.Wx, 95.85.Sz

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There is compelling evidence from electromagnetic observations that the cores of galaxies
contain supermassive black holes (SMBHs) [1]. SMBH binaries can form after galactic
mergers as the black holes from the individual galaxies fall to the center of the merged system
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and form a bound pair. Hierarchical-merger models of galaxy formation predict that SMBH
binaries will be common in galaxies [2, 3] and the presence of one such binary has been
inferred from x-ray measurements of the core of the galaxy NGC 6240 [4]. The evolution
of an SMBH binary will eventually be driven by radiation reaction from the emission of
gravitational waves (GWs) and the binary will inspiral and merge to form a single SMBH. The
GWs from inspirals of SMBH binaries with component masses in the range m∼104–107 M�
will be among the strongest sources for LISA, the planned space-based GW detector [5, 6].
The direct detection of SMBH binaries will be of wide astrophysical relevance, for example by
probing the merger rates and histories of galaxies [7] or by providing cosmological standard
candles [8].

Searching for SMBH binary inspiral signals is expected be one of the more straightforward
tasks in LISA data analysis. The velocities of the black holes during the inspiral are v/c � 1
until the final ∼101–102 cycles, and so existing post-Newtonian waveforms [9, 10] will
describe the inspiral gravitational waveforms with sufficient accuracy for use as templates
in a matched-filter search [11]. As such, searches for SMBH binaries in LISA data will be
similar in nature to existing searches for binary-neutron-star (BNS) inspirals in ground-based
GW detectors, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO) [12].
However, there are several key differences between LIGO and LISA binary inspiral searches.
First, the LIGO pipelines are designed to search for signals with expected signal-to-noise ratios
(SNRs) �10, whereas the SNR of LISA SMBH binaries at distances z � 2 is expected to be
several hundred or more. Second, the BNS signals sweep through the sensitive frequency band
of ground-based detectors on timescales of order a minute, during which detector velocities
and orientations can be considered as fixed to high accuracy. By contrast, LISA will be able to
observe a single SMBH inspiral for weeks to months. During that time, the LISA velocity and
orientation change appreciably, inducing modulations in the recorded signal. Indeed, almost
all the information about an SMBH binary’s sky location and orientation is encoded in these
modulations. (In the ground-based case, a network of three or more widely separated detectors
is required to determine a binary’s sky location by triangulation between the times of arrival of
the GW signals at the different detector locations.) Finally, whereas the rate of BNS inspirals in
ground-based detectors makes it unlikely that multiple signals will be observed concurrently,
LISA data may contain simultaneous signals from a few different SMBH binaries.

Existing search pipelines developed for ground-based observations of stellar-mass binary
inspirals can achieve high detection efficiency already at SNRs ∼10 [13–16], so the task of
detecting SMBH inspirals with LISA seems easy in comparison. Furthermore, since SMBH
binaries at z ∼ 1 have such high SNR, and because of LISA’s relatively wider frequency band
(roughly three orders of magnitude for LISA, compared to two for LIGO), it should also be
possible to determine the masses and spins of the binaries with significantly higher accuracy
in the LISA case than for ground-based detections. Fisher-matrix calculations suggest that,
for SMBHs detected at z ∼ 1, LISA should be able to determine the chirp mass to relative
accuracy ∼10−5, both individual masses to ∼10−3 and the SMBH spins to ∼10−3–10−2 [17].
Indeed, the goal of our data-analysis pipeline is not only to detect the SMBH signals, but also
to provide accurate measurements of the binary parameters.

Based partly on the considerations discussed above, our group has adopted the following
three-stage search method. Low-z SMBH binary inspirals are so bright that they are easily
visible as tracks in time–frequency (TF) spectrograms. Therefore our first stage consists of a
search for such TF tracks; the shape and location of the track yields a first estimate of the two
masses, m1 and m2, and the coalescence time, tc. The second stage is a set of more refined
grid-based matched-filter searches that start in a neighborhood of the best-fit parameters found
in the first stage; these searches home in on more accurate values for the three parameters
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m1,m2 and tc. The final stage is currently a straightforward implementation of a Markov
chain Monte Carlo (MCMC) simulated-annealing search for the best-fit parameters in the
full nine-dimensional parameter space (including also the binary’s luminosity distance, initial
phase, inclination, polarization, ecliptic latitude and longitude).

There are a few reasons for adopting such a complicated algorithm. First, we believe that
the capability of looking for TF tracks is a very useful one to develop in the LISA context: it
could possibly reveal tracks that do not correspond closely to signals from merging binaries,
and so might not be found by more sophisticated (grid-based or MCMC) methods, even though
they are visible to the eye in a TF plot. The track-search method also allows us to count the
number of SMBH binary signals present in the data before attempting parameter estimation.
Second, the grid search is useful to make sure that we do not miss any binary sources, by
examining the entire parameter space. In the pipeline described here, however, we did not
cover the entire parameter space in our grid search; rather, we seeded the second-stage search
using the parameters obtained from the first stage. In future implementations, we intend to
compare the full grid search to this method. Finally, the MCMC approach is clearly very adept
at obtaining the final parameter estimates.

We have tested the performance of our SMBH binary search pipeline using data from
the Mock LISA Data Challenges (MLDCs) [18, 19]. The MLDCs are a program sponsored
by the LISA International Science Team to foster the development of LISA data-analysis
methods and tools, and to demonstrate already acquired milestones in the extraction of science
information from the LISA data output. In the MLDCs, GW signals whose parameter values
are unknown to the challenge participants are embedded in synthetic LISA noise; participants
are challenged to identify the signals and extract their parameters. Challenges of increasing
difficulty are being issued roughly every 6 months. The results from the first challenge are
summarized by Arnaud and colleagues in this volume [20]. Challenge 1 included two datasets
with signals from isolated SMBH systems with differing SNRs (SNR < 500 for challenge
1.2.1 and SNR < 100 for challenge 1.2.2); we analyzed challenge 1.2.1. One of the goals of
the MLDCs is to demonstrate that data-analysis pipelines can actually achieve the remarkable
parameter measurement accuracy predicted by the Fisher-matrix analysis.

For simplicity, the challenge 1 problems omitted two important complications of space-
based binary-inspiral searches that are not present in ground-based searches. First, SMBH
binaries may enter the LISA band with considerable eccentricity, but they were modeled as
circular in challenge 1 (by contrast, the BNSs observed by ground-based detectors will have
become essentially circular by the time they enter the observation band). Second, through
much of LISA’s sensitivity band the dominant noise comes from unresolved Galactic white-
dwarf binaries, which were not included in challenge 1 (by contrast, in the ground-based case
the relevant noise originates almost entirely from the instrument). Our initial search pipeline
took advantage of these simplifications.

The rest of this paper is organized as follows. In sections 2–4, we describe the three
stages in our SMBH binary data-analysis pipeline: a track search in the time–frequency plane,
a grid-based matched filtering search and a Markov chain Monte Carlo search; in section 5,
we present the results of analyzing the MLDC dataset 1.2.1; and in section 6, we discuss our
plans for improving the pipeline to cope with issues such as binary eccentricity and the noise
sources likely to be observed in real LISA data.

2. Stage 1: search for tracks in the time–frequency plane

The TF spectrogram contains enough information to identify an SMBH binary inspiral at a
high SNR. The techniques described below make it possible to quickly search for the presence
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Figure 1. Time–frequency plot of the brightest pixel in each time bin, as computed for the X
channel of challenge 1 training set 1.2.1. In the top plot, one can see the chirp beginning at roughly
1.5 × 107 s. The bottom plot is a blown-up version of the top plot, for the ∼2 × 106 s preceding
the coalescence time, showing the presumed track found on the first pass through the data.

of an SMBH binary inspiral in the signal and to get rough estimates for the coalescence time
and the two masses.

Challenge 1 includes signals from the adiabatic inspiral of a circular binary system of
nonspinning SMBHs. The frequency evolution of these inspirals is given by (7.11a) of [21]
in terms of the time of coalescence tc and the two SMBH masses m1 and m2. We write it
here as a function of the symmetric mass ratio η = m1m2/(m1 + m2)

2 and the chirp mass
Mc = (m1 + m2)η

3/5, using the second-order post-Newtonian (2PN) approximation,
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Here fGW is the GW frequency in Hertz, Mc is expressed in seconds and T is the dimensionless
time variable related to coordinate time t by T = t η8/5/(5Mc).

We create a TF map of the noisy data stream s(t) = h(t) + n(t) (in fact, one of the Time-
delay interferometry (TDI) channels X(t), Y (t) and Z(t) provided in the MLDC datasets),
sampled with timestep δt , in two passes. On the first pass, we split up the data stream into time
bins of equal duration �t . The TF spectrogram will then consist of pixels of size �t × �f ,
where �f = 1/(�t). We determine the normalized power contained in each pixel with a
fast Fourier transform (FFT), normalizing by the power spectral density of the noise, and then
find the peak frequency in each bin by searching for the loudest pixel (see below for details).
The resulting set of {time, frequency} pairs allows us to search for an inspiral track on the TF
map (see figure 1). Once such a track is identified, we make a second pass through the data,
iterating through the track region with time bins of varying duration to create an improved
TF map. Earlier in the track, a larger �t helps to detect a weak signal and achieve greater
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Figure 2. The stars represent individual points on the TF map obtained during the second pass
through the data in the X(t) channel of challenge 1 training set 1.2.1. The curve is the result of
fitting these points to the model (1).

frequency resolution; closer to coalescence, a smaller �t reduces the error in estimating the
rapidly chirping GW frequency.

In fact, we have made several improvements to the general approach outlined in the
previous paragraph. The first set of improvements concerns the determination of the peak
frequency in a given time bin. Simply searching for the loudest pixel would give frequency-
determination errors of order 1/(�f ), even for a noiseless signal. Instead, we achieve higher
accuracy by modeling the bleeding of frequency into neighboring pixels: specifically, we
determine the peak frequency by fitting the logarithm of power in the pixels nearest to the
brightest pixel to a parabola, using zero padding in the time domain to achieve better frequency
resolution when necessary. We also apply a Hanning window to the signal prior to taking the
FFT, and we overlap time bins to avoid information loss from windowing.

Another improvement concerns the variable timestep and the identification of outliers on
the second pass through the data. If the peak frequencies of neighboring time bins differ by
more than 2�f , we decrease �t by a pre-set factor (say 1.5) to reduce the sweep of frequency
in each bin. If this operation fails to bring the peak frequencies closer together, we declare the
data point an outlier, and skip to the next bin.

The {time, frequency} data points obtained on the second pass serve as inputs to a
MATLAB least-squares fitting algorithm that extracts the inspiral parameters tc,Mc and η by
fitting the data points to the model of (1) (see figure 2). Specifically, we find the values tc,Mc

and η that minimize the sum

� =
N∑

i=1

[f (ti) − fGW(ti; tc,Mc, η)]2 , (2)

where ti are the centers of the output time bins, f (ti) are the associated frequencies and
fGW(ti; tc,Mc, η) is the model from (1).

Although one could weight the data points on the basis of the signal amplitude, such
a weighting seems to carry little benefit: late in the inspiral, the increased amplitude offers
greater SNR, which is however substantially offset by poorer frequency determination (due
either to frequency drift within each time bin if �t is not properly adjusted, or to low-frequency
resolution if it is).

Table 1 shows the results of the TF search on the blind challenge dataset 1.2.1. After
averaging results from the three TDI streams, we found Mc = 1.208 × 106M�, η = 0.17 and
tc = 1.3372 × 107 s. The accuracy of these estimates is discussed in section 5; suffice it to
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Table 1. Parameters extracted via TF searches from the X, Y and Z channels of blind challenge
dataset 1.2.1. N is the number of data points obtained during the second pass through the data and
� is the sum of the squares of the residuals, as defined in (2).

N �/10−11 Mc/(106M�) η tc/(107 s)

X 156 9.2 1.2096 0.182 1.3373
Y 190 9.21 1.2033 0.139 1.3370
Z 192 11.5 1.2099 0.183 1.3373

say that these first-stage results were certainly accurate enough for our purpose. Finally, while
challenge 1 tested our method for the case of SMBH signals in synthetic instrumental noise
only, we have verified that our TF search also works well in the presence of confusion noise
from Galactic binaries.

3. Stage 2: grid-based search

The grid-based part of the search relies on the template placement algorithm of Babak et al
[13] and the FINDCHIRP matched filtering algorithm of Allen et al [14], both of which were
developed for the LIGO binary neutron star searches. The basic algorithm is as follows:
a grid of templates is constructed in the (m1,m2) plane using the metric-based square-grid
placement algorithm [13, 22] implemented in the LIGO Algorithm Library (LAL) [23]4. The
fineness of the grid is specified by its minimum-match parameter MM, which is the minimum
overlap between any point in the parameter space and its nearest grid point. We have written
C code that implements the matched filtering and template generation algorithms described in
[14]. These C functions are then ‘wrapped’ by the Simplified Wrapper Interface Generator
(SWIG), which allows them to be called from the Python high-level programming language.
This approach allowed us to rapidly prototype and develop the procedure described below.

For each mass pair in the grid, we compute a (Fourier-transformed) waveform h̃(f )

(corresponding to coalescence at t = 0), using 2PN waveforms and the stationary phase
approximation (SPA) [24]. Note that this h̃(f ) effectively assumes that LISA’s arms have
fixed orientation; i.e., it neglects the modulation due to LISA’s rotational and translational
motion. (This is reasonable as a first pass, since most of the SNR accumulates in only a few
days.) Using the long-wavelength approximation, we transform from h̃(f ) to the LISA TDI
variable X̃h(f ) using

X̃h(f ) = sin2(2πf L)h̃(f ), (3)

where L is the LISA arm length. Let the (Fourier-transformed) data be X̃s(f ): then for each
template waveform X̃h(f ) in our grid we use the FFT to compute the inverse Fourier transform

z(t) =
∫

X̃s(f )X̃∗
h(f )

SX(f )
e2π itf df, (4)

and we maximize |z(t)| over t to estimate the time of coalescence. We identify the best-fit
point in the (m1,m2) plane, and then repeat the search in a neighborhood of that point with a
finer grid. (More specifically, we initially generate a grid on a rectangular section of (m1,m2)

space, but then ‘throw away’ points that are outside a narrow range in Mc.) We do this four
times with a final minimum-match parameter MM = 0.995. For challenge 1.2.1, on the basis
of results from the TF stage (m1 ≈ 2.9×106M� and m2 ≈ 7.3×105M�), we chose our initial

4 Babak et al also describe a more efficient hexagonal placement algorithm, but we were unable to place templates
for LISA SMBH binaries using its LAL implementation. We intend to work with the authors of the LAL code to
resolve this.
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Table 2. True values and estimates from three steps for the challenge parameters. In stages 1 and
2 estimates were made only for parameters Mc and η (and therefore m1 and m2) and tc .

Parameter Unit True value Stage 1 Stage 2 Stage 3

Mc 106M� 1.2086 1.208 1.2108 1.2077
η 0.160 0.17 0.163 0.156
m1 106M� 2.8972 2.74 2.8536 2.9652
m2 106M� 0.7270 0.76 0.7381 0.7130
tc 107s 1.337 4027 1.3372 1.337 4149 1.337 4072
Ecl. lat. θ rad −0.492 – – 0.536
Ecl. long. φ rad 0.866 – – 4.039
Pol. angle ψ rad 3.234 – – 5.886
Init. phase ϕ0 rad 3.527 – – 0.233
Distance D 109 pc 8.000 – – 16.811
Incl. angle ι rad 1.944 – – 0.617

grid to cover the portion of the (m1,m2) plane satisfying 6×105 < m2 < m1 < 3.2×106M�,
with initial MM = 0.30.

Now, our parameter-estimation errors are dominated not by the coarseness of the grid, but
by the fact that our 2PN SPA waveforms are not identical to BBH waveforms injected into the
Mock LISA data, even for the same parameter values. Besides neglecting the modulations due
to LISA’s motion, our 2PN SPA waveforms differ from the MLDC versions by higher-order
PN terms. They are also simply cut off at the frequency of the innermost stable circular orbit
(ISCO) of a test mass in the Schwarzschild spacetime, whereas the MLDC waveforms end
with a very particular choice of taper. Therefore we do one final grid search using MLDC
waveforms (again with MM = 0.995), for a sky position (θ, φ) at the North pole in ecliptic
coordinates, and for some arbitrary choice of the three angles (ι, ψ, ϕ0). Although all five of
these angles are wrong, in this step the other features of the templates (e.g., the 2PN frequency
evolution and the amplitude taper) do match those of the injected MLDC binary waveforms,
and so presumably yield improved parameter estimates. Our best parameters at the end of this
stage are shown in table 2.

4. Stage 3: Markov chain Monte Carlo

So far, the first two stages have given estimates only of the two masses and coalescence time;
in addition, the stage-2 analysis was based only on the X channel. Thus, we rely on the
MCMC stage to find the distance, sky location, and the polarization and inclination angles
of our source. A more efficient way to do this would be to use the F-statistic [25, 26]
to automatically optimize over four amplitude parameters that are functions of distance,
polarization, inclination and initial phase; however, we did not have time to implement this
procedure for challenge 1. Therefore our MCMC code does a brute force search over all
parameters—but with the advantage that it starts in the right vicinity for the masses and
coalescence time, as estimated in the first two stages.

MCMC approaches have shown promise in the extraction of GW-source parameters with
LISA [27–32]. Nevertheless, it has been suggested that, for SMBH binaries, MCMC searches
over a full parameter set need to be started in a neighborhood of the correct source parameters to
efficiently characterize the posterior probability density functions [28]. Since the initial search
grid provided a good estimate of three parameters (the constituent masses and coalescence
time tc), and since it is trivial to extremize analytically over the luminosity distance, we were
hopeful that we could determine the values of the sky location and binary orientation with
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a straightforward implementation of the Metropolis–Hastings algorithm (MHA). Since time
was limited and posterior distributions were not required for challenge 1, we chose not to
estimate these, but rather to use the MHA to locate the best-fit parameters.

In the MHA, a Markov chain is built by accepting a new proposed point with the probability
α = min(1,H); H is the Hastings ratio for a jump from position �x to �y in parameter space,
and is given by

H = p(�y)p(s|�y)q(�x|�y)

p(�x)p(s|�x)q(�y|�x)
, (5)

where p(�x) is the prior distribution, p(s|�y) is the likelihood of the parameter set �y producing
the signal s and q(�x|�y) is the proposal distribution used to generate the move from �x to �y. If
the noise is a normal process with zero mean, the likelihood is given by

p(s|�λ) ∝ exp{−(s − h(�λ)|s − h(�λ))/2}, (6)

with ‘(·|·)’ the standard inner product computed with respect to the LISA instrument noise. In
this work the priors for the masses and time of coalescence for the binary system were given
by the MLDC Taskforce. Uniform priors were chosen for the angular parameters.

The Markov chain process is guaranteed to converge to the posterior probability
distribution if the proposal distribution is nontrivial; however, the speed of convergence does
depend on its choice. In this search we adopted two types of proposals: the first consisted
of a multivariate normal distribution with jumps directed along the eigendirections of the
Fisher information matrix, computed locally; the second amounted to drawing parameters
from uniform distributions. For the angular parameters, both timid and bold draws (from
small or large ranges) were made to ensure we were fully exploring parameter space; for the
component masses, only timid draws (<1%) were used. The initial heating factor [27] for the
runs was chosen empirically (through pilot runs) so that there was an initial acceptance rate of
∼50% in the chains, to enhance the exploration of the parameter space. The cooling schedule
was given by

β =
{

β0
(

1
β0

)i/Na 0 � i � Na

1 i > Na

}
, (7)

where β0 is the initial heating factor, Na is the length of the annealing phase and i is the step
counter.

Multiple concurrent chains were started using the parameter estimates obtained in stage 2.
These were run on a supercomputing cluster with 3.2 GHz Intel Pentium 4 processors, using
Synthetic LISA [33] to reproduce the LISA response to the SMBH binary waveforms. Each
run was limited to 12 h, providing ∼3500 steps in each of the chains. The most promising
candidates at the end of the first run were used as the starting locations of a second run. At the
end of the first run the best candidates had reached log likelihood values in the neighborhood
of 200 000; the second run saw them increase to ∼ 205 000. The chains converged around two
points in parameter space, differing by their locations on opposite sides of the sky. This was
not unexpected: dual maxima at antipodal sky positions are a well-known near degeneracy for
LISA sources (arising from the near degeneracy of the beam pattern functions). Our choice
between the two final parameter sets was based on a visual comparison of the putative signals
with the challenge dataset.

In future implementations of the pipeline, we plan to incorporate the F-statistic in the
MCMC stage to reduce the size of parameter space. This will increase search efficiency and
relax the need to begin the search in a neighborhood of the best-fit parameters (something that
will be necessary when searching for the dimmer SMBH binaries of challenge 2). Another
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Figure 3. Comparison of our best-fit X(t) to the true X(t) for (a) a short stretch of time near tc
and (b) a short stretch near the beginning of the dataset. Clearly, our fit is excellent near tc , where
most of the SNR accumulates, but much poorer at early times.

time-saving measure will be to start the search on a limited portion of the data stream, and
then steadily increase its size. This process, called frequency annealing [34], allows a quick
initial exploration of parameter space, and a careful later investigation of the exquisitely sharp
likelihood peaks close to bright SMBH binaries.

5. Results for MLDC challenge

As was the case for many challenge-1 participants, the 3 December 2006 submission deadline
arrived before our pipeline was fully ready; nevertheless we decided to submit our best
estimates for the parameters of the blind dataset 1.2.1. This dataset consisted of the three TDI
unequal-Michelson channels X(t), Y (t) and Z(t). In stage 1 of our search, we analyzed each
of these channels separately, and simply averaged the three results to arrive at the stage-one
parameter estimates shown in the fourth column of table 2. In stage 2, only the X(t) data were
analyzed (partly because of time pressure). In stage 3, we analyzed two TDI channels given
by X and (X + 2Y )/

√
3, which are noise orthogonal at moderately low frequencies.

The true signal parameters were made publicly available on 4 December, and here we
briefly describe how our search fared in their recovery. The injected signal had a combined5

(A + E) SNR of 667.734; its true physical parameters are listed in the third column of
table 2. Our best-fit waveform matched the true waveform rather well: it had an SNR of
664.47 and its cross-correlation with the true waveform was 0.994 for the A channel and 0.996
for the E channel [35]. The quality of the fit is illustrated in figure 3, which compares the true
X(t) (produced by us from the key file) with our best-fit X(t), for short time stretches near the
coalescence time tc and near the beginning of the dataset. Clearly our fit is excellent near tc,
where most of the SNR accumulates, but is much poorer at early times, when the contribution
to the SNR is much lower. The lesson from the other two Michelson variables is qualitatively
the same.

Our best-fit parameters are listed in the last column of table 2: our inferred chirp mass
Mc was correct to within �Mc/Mc < 10−3, our inferred symmetric mass ratio η to within
�η ≈ 4 × 10−3, and the error in our coalescence time was �tc ≈ 45 s, corresponding to
approximately 0.05 GW periods just before the plunge. Nevertheless, it is clear from our
estimates for the other parameters that, instead of converging on a neighborhood of the true

5 In this context, A and E are the orthogonal, optimal TDI observables given by (2X − Y − Z)/3 and (Z − Y )/
√

3,
as used in [20]. The third orthogonal, optimal TDI observable, T, contributes only a tiny fraction of the total SNR for
these sources.
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maximum, our MCMC code locked into a high but secondary maximum of the posterior
probability distribution. Our inferred sky position is almost at the antipodes of the actual
location (i.e., our ecliptic latitude is approximately the negative of the true value, and our
ecliptic longitude is off by nearly π ). This was not due to a mismatch of conventions or a
bug in our code; rather, it reflects the above-mentioned degeneracy between antipodal sky
locations (the degeneracy becomes perfect in the low-frequency limit). The four parameters
(D, ι, ψ, ϕ0) that determine the overall complex amplitudes of the GW polarizations h+ and
h× were also off by factors of order one, except for our overall phase ϕ0, which was correct to
within 0.004 radians (modulo π ).

It is also instructive (and reassuring) to contemplate the performance of the first two stages
of our search. Stage 1 returned Mc with a fractional error �Mc/Mc < 10−3, η to within ∼6%,
and tc to within ∼2 × 103 s. After stage 2, the estimated Mc was in fact slightly worse, but the
errors in η and tc were significantly reduced, to �η ≈ 0.003 and �tc ≈ 120 s. This gratifying
level of accuracy indicates that the coarser stages 1 and 2 were indeed accomplishing the job
required of them.

6. Future directions

As explained above, the most obvious improvement to our pipeline will be to recast the MCMC
stage so that it maximizes the F-statistic on the five-dimensional space (Mc, η, tc, θ, φ),
reducing the search-space dimensionality by 3. In addition, we will extend our grid search to
handle the case where the merger occurs after the end of the dataset (we did not compete
on dataset 1.2.2 because our current grid search could not handle such mergers). This
generalization should be fairly straightforward.

In the second round of challenges (see the proceeding by Arnaud and colleagues in
this volume [35]), dataset 2.2 contains signals from an entire Galaxy’s worth of white-dwarf
binaries, four to six SMBH binary inspirals (the exact number is not specified) with SNRs
ranging from ∼10 to ∼2000, and five EMRIs. Our plan is to first run our pipeline as a
standalone search for the SMBH binaries, and then to join forces with Crowder and Cornish’s
WD binary search [32] to iteratively improve the fits provided by the two searches. Beyond
that, we plan to extend the SMBH binaries search to include: (1) merger and ringdown
waveforms; (2) spin-precession effects; and (3) the effects of nonzero eccentricity. For the
first two items, we intend to make use of the technology already developed by the ground-
based GW community. For instance, Buonanno, Chen, and Vallisneri [36] have shown how
searches for binaries of spinning BHs can be made considerably more efficient by dividing the
parameters into intrinsic (such as the masses) and extrinsic (such as the orientation of the orbital
plane at a fiducial time), and optimizing over the extrinsic parameters semi-analytically. (This
can be viewed as a generalization to spinning binaries of the F-statistic analysis mentioned
above.) We shall endeavor to generalize this strategy to LISA searches for SMBH binaries.
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